Math 130B Homework 2

Hand in the following questions at discussion on Thursday 21st January

1. The joint density function of X and Y is

$$
\begin{cases}x+y & \text { if } 0<x<1 \text { and } 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Are X and Y independent?
(b) Find the density function of X.
(c) Find $\mathbb{P}(X+Y<1)$ using a double integral.
(d) (Hard!) For the purposes of this part of the question, we assume that X and Y are independent, and define their joint density function to be $g_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$. Find the cumulative distribution function $G_{X+Y}(a)$ using convolutions. Draw sketches to help you compute the necessary integrals and sketch your answer.
2. Suppose that 10^{6} people arrive at a service station at times that are independent random variables, each of which is uniformly distributed over $\left(0,10^{6}\right)$. Let N denote the number that arrive in the first hour. Find an approximation to $\mathbb{P}(N=i)$.
3. Suppose that A, B and C are independent random variables, each being uniformly distributed over $(0,1)$.
(a) What is the joint cumulative distribution function of A, B and C ?
(b) What is the probability that all the roots of the equation $A x^{2}+B x+C=0$ are real?
4. If X and Y are jointly continuous with joint density function $f_{X, Y}(x, y)$, show that $X+Y$ is continuous with density function

$$
f_{X+Y}(t)=\int_{-\infty}^{\infty} f_{X, Y}(x, t-x) \mathrm{d} x
$$

Note: the result in class required X, Y to be independent. Here we do not assume this!

