Summary

Joint Probability Distributions If X, Y are random variables:

p(x,y) =P(X=x,Y =y) (joint mass function if X, Y discrete)

Flx,y) =P(X<x,Y <y) (joint cumulative distribution function)
0*F .. L .

f(x,y) = axdy (joint density, if X, Y continuous)

If A C R? then
//f(x,y) dxdy if X,Y discrete
P(X,Y)e A)=< A

Y. p(xy) if X, Y continuous
(xy)eA

Independence X,Y independent <=> g, such that f(x,y) = g(x)h(y) on entirity of R2. In such
a situation can choose g(x) = fx(x) and h(y) = fy(y).
Corresponding result holds for discrete distributions.

Marginal Mass/Density Functions

=) r(xy) py(y) =Y p(x,y)
Y X

:/f(x,y) dy fr(y) Z/f(x,y) dx
y X

Sums of Independent Variables If X, Y are independent then

Fov(a) = P(X+Y <a) = //HN 0 fy(y) dxdy = [~ Fxa—y)fr(y) dy
Convolution formula:

fxiv(a) = /j:ofx(a —y)fr(y)dy
Conditional Mass/Density Functions

pxv(xly) = P(X = x|y = y) = P& (only valid if py(y) # 0)
py(y)

fX\Y(x’]/> =




Change of Variables If U = U(X,Y) and V = V(X,Y) are a change of variables and S, 7T are sets
such that

(UV)eT <= (X,Y)e S8
then

J[ pexy dxdy =P((x,¥) € §) = P(UV) € T)

://Tfu,v(u,v) du do
— //Sfu,v (u(x,y),v(x,y)) 'ggz:;;‘ dx dy

QU
—~

where

uo) _ J(x,y) = det (ux "y > is the Jacobian. It follows that
(x,y) Ux Uy

fuv(u,0) = fxy(xy) |J(xy)]

QU

Expectations If g(X,Y) is any function, then
E(g(x,Y) = [[sxyfxydrdy or LY g y)p(xy)
Xy

e Linearity: E(¢(X) +h(Y)) = E(g(X)) + E(h(Y))

e If X,Y independent, then E(g(X)h(Y)) = E(g(X))E(h(Y))

e Covariance: Cov(X,Y) = E [(X — ux)(Y — uy)] = E(XY) — uxuy, where ux = E(X), etc.
e Independence = Cov(X,Y) = 0. Converse false.

e Correlation: Corr(X,Y) = p(X,Y) = Co,f)fffy’y)

e Cauchy-Schwarz: —1 < p < 1 with equality iff X and Y are linearly related. In such a case,

Y—‘uy _ j:X—‘uX
Oy ox
e Var) X; =) VarX;+2) Cov(X; X;)
i#]

If all X; are pairwise independent, then Var)_ X; = ) Var X;

Bivariate Normal Distribution Joint density function

flx,y) = 27{(&%{/@ exp {_2(1 ipz) [(x (—Txﬂx>2+ (y ;yl@)z_zp (x ;Xllx> <y ;yyy>] }

e X,Y independentiff p =0
® X ~N(ux,0%) Y~ N(uy,03)
e Corr(X,Y) =p

o X[Y=y~N (#x +pox Y, (1 —pz)(f%)

Oy
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Sample Mean and Variance If Xj,..., X, are identically distributed random variables, then the
sample mean is the random variable

n
) Xi

i=1

X =

Q|-

Idea: each X; is the result of an independent trial/measurement from a large population. If popula-
tion (each of the X;’s distributions) has mean y and variance ¢, then the sample mean may be used
to estimate p:

E(X) =u

The sample variance is the random variable

§? =

1
n—1:*

1

n —
(Xi —X)?
=1

This estimates the population variance: [E(S?) = 2.

The larger the sample, the smaller the variance of the sample mean:

2
Var X = v
n

Conditional Expectations E(X|Y) = E(X|Y = y) is a function of y
Conditioning: for any intermediate variable Y

E(X) = E(E(X]Y)) = /ylE(XIY =y)fr(y)dy or Y} E(X|Y =y)pr(y)
¥
Idea: average of X equals the average over Y of all of the averages of X given Y.

Prediction If X, Y have finite variances, then the best linear predictor of X given Y = y is

X~ g(y) = px + pox (W)
Y

Among all linear functions of Y, the linear predictor minimizes the functional

E[(X-g(¥))] (*)
Among all functions of Y, the function which minimizes (x) is

g(Y) = E(X]Y)
Conditional Variance Var(X|Y) is also a function of Y = y. Indeed

2
Var(X|Y = y) = E (X~ E(X|Y))’|Y =)
2
=E(X*|Y =y) - (E(X|]Y =y))

Can condition to compute variances

Var X = E( Var(X|Y)) + Var (E(X]Y))



Moments
(Raw) Moments E(X") wheren =1,2,3,...
Central Moments E [(X — u)"] where y = E(X)

Higher moments give more information on shape of a distribution: e.g. third central moment related
to skewness of distribution.
General idea: know the moments, know the distribution (or at least can approximate to any accuracy)

Moments of number of events which occur Write X = ) X; where X; is the indicator for an event.
Then X is the number of events which occur.

Events: E(X) =) E(X;) =) P(X;=1)
X
Pairs: 1E< ) =Y E(X;X;)) =) P(X;=1,X;=1)
2 i<j i<j
X
Triples (etc.): E ) = ) EXXX)= ) PX;=1X=1X=1)
3 i<j<k i<j<k

Since E(¥) = 1 (IE(X?) — E(X)) can use to compute Variance.

. . > E(X")
Moment generating functions Mx(t) = E(e'X) = Z;) o t"
n=
Recover raw moments: E(X") = Mg?) (0)

Independence: If X, Y independent then My y(t) = Mx(t)My(t)

Limit Theorems
Markov’s inequality: if X is non-negative, then
1
P(X >a) < E]E(X)

Chebyshev’s inequality: if X has finite mean y and variance ¢, then

2
o
P(X -4 2K) < 7

Typically the estimates provided by these inequalities are very poor.

Weak law of large numbers Probability that average is far-away from y goes to zero as n — co.
If X1, X, ... are independent and identically distributed with mean y and finite variance o2, then, for
alle >0

P<‘x1+---+xn

0.2
n Nnes n—oo

K

Weak law still true when variance is infinite, but not so useful for estimating. Can use to answer
questions such as:

How many measurements/trials needed in order to be p% sure that our average is within g% of the
population mean?
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Central Limit Theorem Loosely: If X has mean y and variance 02 and can be viewed as the sum of
a large number of independent variables, then X is approximately N(u, 0?) distributed.

A simpler, more precise version: Let Xj, X», . .. be independent identically distributed variables with
mean u and variance 2. Then

]P{X1+..(.T:;ﬁxn—nﬂ ga} :]P{g/l\/ﬁ(x_") ga} ,H_ZocD(”)

Alternatively:
o X1+ Xy + -+ X, is approximately N(nyu, no?) for large n
e The sample mean X is approximately N (y, ‘772) distributed for large n.

Strong Law of Large Numbers If Xy, ... are independent identically distributed random variables
then

P(an:y> 1
n—soco n

Intuitively: the long term frequency of an event happening given many repeated trials equals the
probability of said event happening.



