
Summary

Joint Probability Distributions If X, Y are random variables:

p(x, y) = P(X = x, Y = y) (joint mass function if X, Y discrete)
F(x, y) = P(X ≤ x, Y ≤ y) (joint cumulative distribution function)

f (x, y) =
∂2F

∂x∂y
(joint density, if X, Y continuous)

If A ⊆ R2 then

P((X, Y) ∈ A) =


∫∫
A

f (x, y)dx dy if X, Y discrete

∑
(x,y)∈A

p(x, y) if X, Y continuous

Independence X, Y independent ⇐⇒ ∃g, h such that f (x, y) = g(x)h(y) on entirity of R2. In such
a situation can choose g(x) = fX(x) and h(y) = fY(y).
Corresponding result holds for discrete distributions.

Marginal Mass/Density Functions

pX(x) = ∑
y

p(x, y) pY(y) = ∑
x

p(x, y)

fX(x) =
∫

y
f (x, y)dy fY(y) =

∫
x

f (x, y)dx

Sums of Independent Variables If X, Y are independent then

FX+Y(a) = P(X + Y ≤ a) =
∫∫

x+y≤a
fX(x) fY(y)dx dy =

∫ ∞

−∞
FX(a− y) fY(y)dy

Convolution formula:

fX+Y(a) =
∫ ∞

−∞
fX(a− y) fY(y)dy

Conditional Mass/Density Functions

pX|Y(x|y) = P(X = x|Y = y) =
p(x, y)
pY(y)

(only valid if pY(y) 6= 0)

fX|Y(x|y) = f (x, y)
fY(y)



Change of Variables If U = U(X, Y) and V = V(X, Y) are a change of variables and S , T are sets
such that

(U, V) ∈ T ⇐⇒ (X, Y) ∈ S
then ∫∫

S
fX,Y(x, y)dx dy = P((X, Y) ∈ S) = P((U, V) ∈ T )

=
∫∫
T

fU,V(u, v)du dv

=
∫∫
S

fU,V (u(x, y), v(x, y))
∣∣∣∣∂(u, v)
∂(x, y)

∣∣∣∣ dx dy

where
∂(u, v)
∂(x, y)

= J(x, y) = det
(

ux uy
vx vy

)
is the Jacobian. It follows that

fU,V(u, v) = fX,Y(x, y) |J(x, y)|−1

Expectations If g(X, Y) is any function, then

E(g(X, Y)) =
∫∫

g(x, y) f (x, y)dx dy or ∑
x

∑
y

g(x, y)p(x, y)

• Linearity: E(g(X) + h(Y)) = E(g(X)) + E(h(Y))

• If X, Y independent, then E(g(X)h(Y)) = E(g(X))E(h(Y))

• Covariance: Cov(X, Y) = E [(X− µX)(Y− µY)] = E(XY)− µXµY, where µX = E(X), etc.

• Independence =⇒ Cov(X, Y) = 0. Converse false.

• Correlation: Corr(X, Y) = ρ(X, Y) = Cov(X,Y)
σXσY

• Cauchy–Schwarz: −1 ≤ ρ ≤ 1 with equality iff X and Y are linearly related. In such a case,

Y− µY

σY
= ±X− µX

σX

• Var ∑ Xi = ∑ Var Xi + 2 ∑
i 6=j

Cov(Xi, Xj)

If all Xi are pairwise independent, then Var ∑ Xi = ∑ Var Xi

Bivariate Normal Distribution Joint density function

f (x, y) =
1

2πσxσy
√

1− ρ2
exp

{
− 1

2(1− ρ2)

[(
x− µx

σx

)2

+

(
y− µy

σy

)2

−2ρ

(
x− µx

σX

)(
y− µy

σy

)]}
• X, Y independent iff ρ = 0

• X ∼ N(µX, σ2
X) Y ∼ N(µY, σ2

Y)

• Corr(X, Y) = ρ

• X|Y = y ∼ N
(

µX + ρσX
y− µY

σY
, (1− ρ2)σ2

X

)
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Sample Mean and Variance If X1, . . . , Xn are identically distributed random variables, then the
sample mean is the random variable

X =
1
n

n

∑
i=1

Xi

Idea: each Xi is the result of an independent trial/measurement from a large population. If popula-
tion (each of the Xi’s distributions) has mean µ and variance σ2, then the sample mean may be used
to estimate µ:

E(X) = µ

The sample variance is the random variable

S2 =
1

n− 1

n

∑
i=1

(Xi − X)2

This estimates the population variance: E(S2) = σ2.
The larger the sample, the smaller the variance of the sample mean:

Var X =
σ2

n

Conditional Expectations E(X|Y) = E(X|Y = y) is a function of y
Conditioning: for any intermediate variable Y

E(X) = E
(
E(X|Y)

)
=
∫

y
E(X|Y = y) fY(y)dy or ∑

y
E(X|Y = y)pY(y)

Idea: average of X equals the average over Y of all of the averages of X given Y.

Prediction If X, Y have finite variances, then the best linear predictor of X given Y = y is

X ≈ g(y) = µX + ρσX

(
y− µY

σY

)
Among all linear functions of Y, the linear predictor minimizes the functional

E
[
(X− g(Y))2] (∗)

Among all functions of Y, the function which minimizes (∗) is

g(Y) = E(X|Y)

Conditional Variance Var(X|Y) is also a function of Y = y. Indeed

Var(X|Y = y) = E
((

X−E(X|Y)
)2|Y = y

)
= E

(
X2|Y = y

)
−
(
E(X|Y = y)

)2

Can condition to compute variances

Var X = E
(

Var(X|Y)
)
+ Var

(
E(X|Y)

)
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Moments

(Raw) Moments E(Xn) where n = 1, 2, 3, . . .

Central Moments E [(X− µ)n] where µ = E(X)

Higher moments give more information on shape of a distribution: e.g. third central moment related
to skewness of distribution.
General idea: know the moments, know the distribution (or at least can approximate to any accuracy)

Moments of number of events which occur Write X = ∑ Xi where Xi is the indicator for an event.
Then X is the number of events which occur.

Events: E(X) = ∑ E(Xi) = ∑ P(Xi = 1)

Pairs: E

(
X
2

)
= ∑

i<j
E(XiXj) = ∑

i<j
P(Xi = 1, Xj = 1)

Triples (etc.): E

(
X
3

)
= ∑

i<j<k
E(XiXjXk) = ∑

i<j<k
P(Xi = 1, Xj = 1, Xk = 1)

Since E(X
2) =

1
2

(
E(X2)−E(X)

)
can use to compute Variance.

Moment generating functions MX(t) = E(etX) =
∞

∑
n=0

E(Xn)

n!
tn

Recover raw moments: E(Xn) = M(n)
X (0)

Independence: If X, Y independent then MX+Y(t) = MX(t)MY(t)

Limit Theorems

Markov’s inequality: if X is non-negative, then

P(X ≥ a) ≤ 1
a

E(X)

Chebyshev’s inequality: if X has finite mean µ and variance σ2, then

P(|X− µ| ≥ k) ≤ σ2

k2

Typically the estimates provided by these inequalities are very poor.

Weak law of large numbers Probability that average is far-away from µ goes to zero as n→ ∞.
If X1, X2, . . . are independent and identically distributed with mean µ and finite variance σ2, then, for
all ε > 0

P

(∣∣∣∣X1 + · · ·+ Xn

n
− µ

∣∣∣∣ ≥ ε

)
≤ σ2

nε2 −→n→∞
0

Weak law still true when variance is infinite, but not so useful for estimating. Can use to answer
questions such as:

How many measurements/trials needed in order to be p% sure that our average is within q% of the
population mean?
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Central Limit Theorem Loosely: If X has mean µ and variance σ2 and can be viewed as the sum of
a large number of independent variables, then X is approximately N(µ, σ2) distributed.
A simpler, more precise version: Let X1, X2, . . . be independent identically distributed variables with
mean µ and variance σ2. Then

P

{
X1 + · · ·+ Xn − nµ

σ
√

n
≤ a

}
= P

{
1

σ/
√

n
(X− µ) ≤ a

}
−→
n→∞

Φ(a)

Alternatively:

• X1 + X2 + · · ·+ Xn is approximately N(nµ, nσ2) for large n

• The sample mean X is approximately N(µ, σ2

n ) distributed for large n.

Strong Law of Large Numbers If X1, . . . are independent identically distributed random variables
then

P

(
lim
n→∞

X1 + · · ·+ Xn

n
= µ

)
= 1

Intuitively: the long term frequency of an event happening given many repeated trials equals the
probability of said event happening.
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