Math 161: Homework Questions 5

Submit your answers to questions 2, 4, 5, 8, and 10 at the discussion on Thursday 28th February.

1. (a) For any vectors \(v, w \in \mathbb{R}^2 \), prove that
\[
 v \cdot w = \frac{1}{2} \left(|v + w|^2 - |v|^2 - |w|^2 \right)
\]

(b) Let \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) be a linear map which preserves length. Use (a) to prove that \(f(v) \cdot f(w) = v \cdot w \) for all vectors \(v, w \). Hence conclude that \(f \) preserves angles between vectors.

2. Let \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) be the isometry, “reflect across the line through the origin making angle 60° with the positive x-axis.”
 (a) Find a \(2 \times 2 \) matrix \(A \) such that \(f(x) = Ax \).
 (b) Find an alternative written description of \(f \) using only rotations and reflection across the x-axis. Check that your description is correct using matrix multiplication.

3. Recall that every isometry can be viewed as a function (acting on position vectors)
\[
f_{A,b} : x \mapsto Ax + b
\]
where \(A \) is an orthogonal matrix and \(b \) is a constant vector. That is, every isometry is a combination of a rotation/reflection and a translation.

 (a) Prove that isometries obey the composition law
\[
f_{A,b} \circ f_{C,d} = f_{AC,Ad+b}
\]
so that the composition of two isometries is an isometry.

 (b) What is the inverse of the isometry \(f_{A,b} \)? Otherwise said, if \(f_{A,b} \circ f_{C,d} = f_{I,0} \), where \(I \) is the identity matrix, what are \(C \) and \(d \)?

 (c) Compute the composition
\[
f_{A,b} \circ f_{I,d} \circ f_{A,b}^{-1}
\]
(You should obtain a pure translation. For those who’ve done group theory, this shows that the translations form a normal subgroup of the group of isometries.)

4. Let \(ABCD \) be a rectangle with vertices
\[
A = (0,0), \quad B = (4,0), \quad C = (4,3), \quad D = (0,3)
\]
Suppose an isometry \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) maps \(ABCD \) to a new rectangle \(PQRS \) where
\[
P = f(A) := (2,4) \quad \text{and} \quad R = f(C) := (2,9)
\]
Find all possible isometries \(f \), and the remaining points \(Q = f(B) \) and \(S = f(D) \) of the new rectangle.
The remaining questions are within the Poincaré disk model of hyperbolic geometry.

5. Prove Lemma 6.3 from the notes:

(a) If one bisects the base and summit of a Saccheri quadrilateral, one obtains two congruent Lambert quadrilaterals.
(b) The summit angles of a Saccheri quadrilateral are congruent.

In particular, make sure you can do this without using the parallel postulate!

6. Prove the remaining part of Lemma 6.4: a Lambert quadrilateral in Euclidean geometry is a rectangle.

7. Prove carefully that a circle intersects the unit circle \(x^2 + y^2 = 1 \) at right-angles if and only if it has equation

\[
x^2 + y^2 - 2ax - 2by + 1 = 0 \quad \text{where} \quad a^2 + b^2 > 1
\]

8. (a) Find the hyperbolic line in the Poincaré disk model on which lie the points \(P = (1/4, 0) \) and \(Q = (0, 1/2) \).

(b) Find the side lengths of the hyperbolic triangle \(\triangle OPQ \) where \(O = (0, 0) \) is the origin.

(c) The triangle in part (b) is right-angled at \(O \). If \(o, p, q \) represent the hyperbolic lengths of the sides opposite \(O, P, Q \) respectively, check that the Pythagorean theorem \(p^2 + q^2 = o^2 \) is false. Now compute \(\cosh p \cosh q \): what do you observe?

9. In this question we prove Lemma 6.7 from the notes: Fix \(P \) and a hyperbolic line through \(P \). Let \(Q \) lie on this line. Then the distance function \(d(P, Q) \) maps the set of points on one side of \(P \) differentiably and bijectively onto the interval \((0, \infty)\).

The fact that \(d(P, Q) \) is a differentiable function should be clear, since it is a differentiable (multivariable) function of both \(P \) and \(Q \).

Now suppose \(Q \) lies on the hyperbolic line through \(P \) with omega-points \(\Omega, \Theta \). Let \(|Q\Omega| = x \) and \(|Q\Theta| = y \) be Euclidean distances. WLOG assume \(Q \) lies between \(P \) and \(\Theta \) as in the picture.

(a) Show that \(\ln \frac{|P\Theta||Q\Theta|}{|P\Omega||Q\Omega|} > 0 \) so that

\[
d(P, Q) = \ln \frac{|P\Theta|}{|P\Omega|} + \ln x - \ln y
\]

(b) Prove that \(\frac{d}{dQ}d(P, Q) > 0 \) so that \(d(P, Q) \) is a strictly increasing function as \(Q \) moves away from \(P \).

(c) Use the intermediate value theorem to prove that \(d(P, Q) \) is surjective onto \((0, \infty)\).
10. (a) Show that the hyperbolic line ℓ joining the points $P, Q = \left(\frac{1}{2}, \pm \sqrt{\frac{5}{12}} \right)$ is an arc of the circle with equation

$$x^2 - \frac{10}{3} x + y^2 + 1 = 0$$

(b) Use implicit differentiation to calculate $\frac{dy}{dx}$ and hence show that a tangent vector to ℓ at P is $\sqrt{15}i + 7j$

(c) Hence show that the angle $\angle OPQ$ in the hyperbolic triangle $\triangle OPQ$ is $\cos^{-1} \frac{5\sqrt{10}}{16} \approx 8.806^\circ$, as claimed.