Math 162A: Differential Geometry Homework 4

Hand in questions 2, 3 & 4 at, or before, the lecture on Friday October 24th.
Question 6 is just harder and 7 & 8 are much harder than A grade work.
No homework week 5 because of the midterm on Monday — use this to prepare!

1. Find the curvature of the degree \(n \geq 1 \) polynomial \(y = x^n \) at all points (find a sensible parameterization of the curve first). For each \(n \) find the maximum value of the curvature and the location on the curve of the point of maximum curvature (it’s messy...).

2. Recall the tractrix
\[
x(t) = \left(\frac{\sinh^{-1} t - t(1 + t^2)^{-1/2}}{(1 + t^2)^{-1/2}} \right).
\]
Show that the tangent line to the tractrix hits the \(x \)-axis at a distance 1 from the curve for \(t > 0 \) (this justifies the claim that the tractrix is the curve traced by a mass starting at \(\left(\frac{0}{1} \right) \) attached by a length 1 rope to a vehicle moving along the \(x \)-axis).

3. Find the curvature of the tractrix in the above parameterization for \(t > 0 \).

4. Show directly that the tangent vector at time \(t \) of the involute \(i(t) = x(t) - tx'(t) \) of a unit speed curve is always orthogonal to the tangent vector of the original curve at time \(t \).

5. Show that the evolute of the ellipse
\[
x(t) = \left(\frac{a \cos t}{b \sin t} \right)
\]
is given by \(e(t) = (a^2 - b^2) \left(\frac{a^{-1} \cos^3 t}{-b^{-1} \sin^3 t} \right) \).
This curve is a called an asteroid (have a look at the animation on the Wikipedia evolute page!).

6. Suppose that \(x(t) \) is any unit speed curve in \(\mathbb{E}^2 \) with positive curvature everywhere. Prove that the curvature of its involute is \(\frac{1}{t} \). It looks like all involutes have the same curvature, and so all involutes should be identical up to rigid motions. Explain why this conclusion is nonsense.

7. A cylinder is any surface \(S(t,s) = y(t) + sk \), where \(k \) is a constant vector, and \(y(t) \) is a curve in the space \(k^\perp \). A cylindrical (but not necessarily circular) helix is any curve \(x(t) \) such that the unit tangent vector \(T \) makes a constant angle with some fixed vector \(k \). Suppose that \(x \) is a unit speed cylindrical helix, and that the angle in question is not a right angle.

 (a) Show that \(x \) is a curve lying on the surface of a cylinder.

 (b) Use the Frenet-Serret formulas to prove that curve is a cylindrical helix iff \(\kappa / \tau \) is constant.

8. Suppose that a moving frame \(e_1, e_2, e_3 \) has structure equations such that all three functions \(\bar{w}_{12}, \bar{w}_{13}, \bar{w}_{23} \) are constant. Find the moving frame \(f_1, f_2, f_3 \) where \(f_1 = e_1 \) such that \(f_1, f_2, f_3 \) is the Frenet frame of a circular helix. Calculate the curvature \(\kappa \) and torsion \(\tau \) of this helix in terms of \(\bar{w}_{12}, \bar{w}_{13}, \bar{w}_{23} \). Can you write down an orthogonal matrix \(A \) such that
\[
A^{-1} \begin{pmatrix} 0 & \bar{w}_{12} & \bar{w}_{13} \\ -\bar{w}_{12} & 0 & \bar{w}_{23} \\ -\bar{w}_{13} & -\bar{w}_{23} & 0 \end{pmatrix} A = \begin{pmatrix} 0 & -\kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0 \end{pmatrix}?
\]