Math 162A: Homework 6

Submit your answers to the starred questions at the discussion class on Thursday 8th March.

1. Compute the first fundamental forms of the following parameterized surfaces wherever they are regular (a, b, c are constants):

 (a) Ellipsoid $\mathbf{x}(u, v) = (a \sin u \cos v, b \sin u \sin v, c \cos u)^T$

 (b) Elliptic paraboloid $\mathbf{x}(u, v) = (au \cos v, bu \sin v, u^2)^T$

 (c) Hyperbolic paraboloid $\mathbf{x}(u, v) = (au \cosh v, bu \sinh v, u^2)^T$

 (d) Hyperboloid of two sheets $\mathbf{x}(u, v) = (a \sinh u \cos v, b \sinh u \sin v, c \cosh u)^T$

 How do these simplify in the symmetric cases when $a = b = c$? Where does each parameterization fail to be regular?

2. * Calculate the fundamental forms of Enneper’s surface

 $\mathbf{x}(u, v) = \begin{pmatrix} u - u^3/3 + uv^2 \\ v - v^3/3 + vu^2 \\ u^2 - v^2 \end{pmatrix}$

3. * Consider the upper half plane $y > 0$ equipped with the first fundamental form $I = \frac{dx^2 + dy^2}{y^2}$ as in the notes. Compute the arc-length between the points $(1, 1)$ and $(-1, 1)$ in two ways:

 (a) Over the circular arc centered at the origin.

 (b) Over the straight line between the points.

 Compare your answers!

 Also compute the arc-length over the circular arc centered at the origin between the points (r, r) and $(-r, r)$. How does this arc-length depend on r? (Quote the integral from the notes if you wish)

4. * Let $y(s)$ be a unit speed biregular curve and $\mathbf{x}(s, t) = y(s) + ty'(s)$ be its tangent developable, where $t > 0$. Calculate the first and second fundamental forms of \mathbf{x} in terms of the parameterization s, t and the curvature and torsion of y.

 Hence or otherwise show that the fundamental forms of the tangent developable of the unit helix $y(s) = \begin{pmatrix} \cos s/\sqrt{2} \\ \sin s/\sqrt{2} \\ s/\sqrt{2} \end{pmatrix}$ are

 $I = \left(1 + \frac{t^2}{4}\right) ds^2 + 2 ds dt + dt^2, \quad \mathcal{I} = -\frac{t}{4} ds^2$

5. (Hard) Consider the parameterization of the torus with interior hole of radius 1 and rotating circle also of radius 1.

 $\mathbf{x}(u, v) = \begin{pmatrix} (2 + \cos u) \cos v \\ (2 + \cos u) \sin v \\ \sin u \end{pmatrix}, \quad u, v \in \mathbb{R}$

 Consider also the curve $z(t) = (t, \alpha t)$ in \mathbb{R}^2, where $\alpha \in \mathbb{R}$ is constant, so that $\mathbf{x}(z(t))$ is a curve on the torus.
(a) Prove that $x(z(t))$ has a self-intersection ($\exists s \neq t$ such that $x(z(t)) = x(z(s))$) if and only if α is a rational number.

(b) If $\alpha \in \mathbb{Q}$, prove that the curve is closed. Moreover show that there exists a minimum positive value of t for which $x(z(t)) = x(z(0))$ and find it in terms of α.

(Recall that a closed curve has no ends, it keeps tracing over itself indefinitely — e.g. a circle)

(c) Thus write down (but don’t evaluate!) the integral for the length of the closed curve in terms of α.