Math 162A: Differential Geometry Midterm

Total marks = 50. When a question asks you to sketch a curve, you are not required to calculate exactly, just indicate roughly what the curve looks like.

1. State what it means for a curve \(x : \mathbb{R} \rightarrow \mathbb{R}^3 \) to be regular. What is required in addition for \(x \) to be biregular? One each of the following three curves is regular, biregular and neither at \(t = 0 \): without calculating anything, state which is which. (10)

\[
\begin{align*}
\text{(a)} \quad & x(t) = \begin{pmatrix} t \\ |t| \\ 1 \end{pmatrix}, \\
\text{(b)} \quad & y(t) = \begin{pmatrix} t \\ t|t| \\ 1 - t \end{pmatrix}, \\
\text{(c)} \quad & z(t) = \begin{pmatrix} t \\ \cos|t| \\ t^2 \end{pmatrix}.
\end{align*}
\]
2. Consider the curve \(\mathbf{x}(t) = \begin{pmatrix} 3t \\ t^3 \\ 3t \end{pmatrix} \).

(a) Find the unit tangent vector and the curvature of \(\mathbf{x}(t) \). (10)

(b) Without calculating either the unit normal or binormal vectors, argue that the torsion of \(\mathbf{x}(t) \) is zero. (4)

(c) Argue, given your answers to parts (a) and (b), that you could write down two possibilities for the Frenet frame of \(\mathbf{x}(t) \) \textit{without} performing any further differentiations. (6)
3. Recall that the evolute \(e(t) \) and involute \(i(t) \) of a planar curve \(x(t) \) are defined by

\[
e(t) = x(t) + \frac{1}{\kappa(t)} N(t), \quad i(t) = x(t) - tx'(t),
\]

where \(x \) must be unit speed for the involute to be correctly defined.

(a) On the following plot of a letter ‘e’, draw your best guesses for all the osculating circles at the intersection point \(A \), the point (seemingly) of maximum curvature \(B \), and the end of the tail \(C \). Using these sketch your best guess for the evolute of ‘e’. Also, supposing that \(t = 0 \) is at point \(B \), and that \(t \) increases as you move down and right from \(B \), draw your guess at the involute for this parameterization and for \(t > 0 \).
(b) We have seen that the evolute $e(t)$ of a curve $x(t)$ is the focal line of its normal vector field. This, together with looking at pictures, suggests that, at places where e is differentiable, there should be a function $\alpha(t)$ such that

$$e(t) + \alpha(t)e'(t) = x(t).$$

Suppose that $x(t)$ is a curve in \mathbb{R}^2 with non-constant curvature. Find $\alpha(t)$. \hfill (13)