Math 162B: Differential Geometry Homework 1

Hand in questions 4, 5 and 6 at lecture Monday 12th January.
First a couple of questions to remind yourself about 162A...

1. Consider the curve $\mathbf{x}(t)$ defined by

$$
\mathbf{x}(t)=\left\{\left(\begin{array}{c}
t \\
t^{3} \\
0
\end{array}\right) \text { when } t>0, \quad\left(\begin{array}{c}
t \\
0 \\
t^{3}
\end{array}\right) \text { when } t<0, \quad\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text { when } t=0 .\right.
$$

(a) Prove that $\mathbf{x}(t)$ is a regular differentable curve.
(b) Show that the torsion of $\mathbf{x}(t)$ is zero whenever it is defined.
(c) $\mathbf{x}(t)$ is not a planar curve. Given part (b), explain how this is possible.
2. Recall from the lectures the comment that circles on the unit sphere $x^{2}+y^{2}+z^{2}=1$ are mapped under the stereographic projection

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \mapsto\binom{X}{Y}=\frac{1}{1-z}\binom{x}{y}, \quad z \neq 1
$$

to circles or lines in the equatorial plane. Prove this theorem using the following steps.

Recall that a circle on the surface of the sphere is the intersection of the sphere with a plane.
(a) Assume that $(x, y, z)^{T}$ lies on the plane $a x+b y+c z=c$. Prove that $a X+b Y=c$.
(b) Prove that $X^{2}+Y^{2}=\frac{1+z}{1-z}$.
(c) Suppose now that $(x, y, z)^{T}$ lies on the plane $a x+b y+c z=1+c$. Use part (b) to show that in this case (X, Y) satisfies the equation of a circle

$$
\begin{equation*}
(X-a)^{2}+(Y-b)^{2}=a^{2}+b^{2}-2 c-1 \tag{†}
\end{equation*}
$$

It remains to show two things: that we have taken into consideration all circles on the sphere, and that the circle defined in part (c) really is a circle.
(d) Consider the plane $a x+b y+c z=d$. If $c \neq d$, show that the equation of the plane may be rewritten so that $d-c=1$. Argue that all planes in \mathbb{R}^{3} are considered in parts (a) and (c).
(e) Assume that the plane $a x+b y+c z=d$ intersects the unit sphere. By considering the unit normal vector $\frac{1}{\sqrt{a^{2}+b^{2}+c^{2}}}(a, b, c)^{T}$ to the plane, explain why we must have

$$
|d| \leq \sqrt{a^{2}+b^{2}+c^{2}} .
$$

What does equality in this formula mean? Use this to conclude that the right hand side of (\dagger) is non-negative.
(f) Use parts (a) through (e) to argue that any circle on the surface of the sphere is projected to a circle or a line under the stereographic projection and that conversely every circle and line in the equatorial plane arises this way.
3. Consider the following differential forms in \mathbb{R}^{3}.

$$
\begin{gathered}
\alpha=2 x y \mathrm{~d} x+3 x z \mathrm{~d} y-\mathrm{d} z, \quad \beta=z \mathrm{~d} x-z^{3} \mathrm{~d} y-2 \mathrm{~d} z, \\
\gamma=y \mathrm{~d} x \wedge \mathrm{~d} y-x y^{2} \mathrm{~d} x \wedge \mathrm{~d} z-\mathrm{d} y \wedge \mathrm{~d} z, \\
\delta=-y z^{2} \mathrm{~d} x \wedge \mathrm{~d} y-3 x y \mathrm{~d} x
\end{gathered} \mathrm{~d} z+z^{2} \mathrm{~d} y \wedge \mathrm{~d} z .
$$

Find every possible wedge product of two of the forms, in both orders, writing the results in standard form. Check, for each pair ω, ϕ of forms, that $\omega \wedge \phi=(-1)^{\operatorname{deg} \omega \operatorname{deg} \phi} \phi \wedge \omega$ is satisfied.
4. Calculate the exterior derivative of each of the forms in Exercise 3, giving your answers in standard form. Compute $\mathrm{d}(\alpha \wedge \beta)$ directly, and check that it equals $\mathrm{d} \alpha \wedge \beta+(-1)^{\operatorname{deg} \alpha} \alpha \wedge \mathrm{d} \beta$. Check also that $\mathrm{d}(\mathrm{d} \alpha)=0$.
5. Let r, θ, ϕ be spherical polar co-ordinates: i.e. $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$. Compute $\mathrm{d} x, \mathrm{~d} y, \mathrm{~d} z$ in terms of $\mathrm{d} r, \mathrm{~d} \theta, \mathrm{~d} \phi$. Moreover, show that

$$
\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z=r^{2} \sin \theta \mathrm{~d} r \wedge \mathrm{~d} \theta \wedge \mathrm{~d} \phi
$$

6. Let f, g be functions and consider the 1 -form $\alpha=g \mathrm{~d} f$. Show that $\alpha \wedge \mathrm{d} \alpha=0$. Is it possible to write $\mathrm{d} x+y \mathrm{~d} z$ in \mathbb{R}^{3} in the form $g \mathrm{~d} f$?
7. Let α, β be 1 -forms in \mathbb{R}^{n}, with α everywhere non-zero. Show that if $\alpha \wedge \beta=0$ then β is proportional to α (i.e. there is a function f such that $\beta=f \alpha$). (Hint: $\alpha \neq 0$ everywhere, so extend $\left.\alpha\right|_{p}$ to a basis of 1 -forms at p. Now write $\left.\beta\right|_{p}$ in terms of this basis...)
