
Math 162B: Differential Geometry Homework 1

Hand in questions 4, 5 and 6 at lecture Monday 12th January.

First a couple of questions to remind yourself about 162A. . .

1. Consider the curve x(t) defined by

x(t) =


 t

t3

0

 when t > 0,

 t
0
t3

 when t < 0,

0
0
0

 when t = 0.

(a) Prove that x(t) is a regular differentable curve.

(b) Show that the torsion of x(t) is zero whenever it is defined.

(c) x(t) is not a planar curve. Given part (b), explain how this is possible.

2. Recall from the lectures the comment that circles on the unit sphere x2 + y2 + z2 = 1 are mapped
under the stereographic projectionx

y
z

 7→ (
X
Y

)
=

1
1− z

(
x
y

)
, z 6= 1,

to circles or lines in the equatorial plane. Prove this theorem using the following steps.

N

(x, y, z)

(X, Y)

Recall that a circle on the surface of the sphere is the intersection of the sphere with a plane.

(a) Assume that (x, y, z)T lies on the plane ax + by + cz = c. Prove that aX + bY = c.

(b) Prove that X2 + Y2 = 1+z
1−z .

(c) Suppose now that (x, y, z)T lies on the plane ax + by + cz = 1 + c. Use part (b) to show
that in this case (X, Y) satisfies the equation of a circle

(X− a)2 + (Y− b)2 = a2 + b2 − 2c− 1. (†)

It remains to show two things: that we have taken into consideration all circles on the sphere,
and that the circle defined in part (c) really is a circle.

(d) Consider the plane ax + by + cz = d. If c 6= d, show that the equation of the plane may be
rewritten so that d− c = 1. Argue that all planes in R3 are considered in parts (a) and (c).
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(e) Assume that the plane ax + by + cz = d intersects the unit sphere. By considering the unit
normal vector 1√

a2+b2+c2 (a, b, c)T to the plane, explain why we must have

|d| ≤
√

a2 + b2 + c2.

What does equality in this formula mean? Use this to conclude that the right hand side of
(†) is non-negative.

(f) Use parts (a) through (e) to argue that any circle on the surface of the sphere is projected
to a circle or a line under the stereographic projection and that conversely every circle and
line in the equatorial plane arises this way.

3. Consider the following differential forms in R3.

α = 2xy dx + 3xz dy− dz, β = z dx− z3 dy− 2 dz,

γ = y dx ∧ dy− xy2 dx ∧ dz− dy ∧ dz,

δ = −yz2 dx ∧ dy− 3xy dx ∧ dz + z2 dy ∧ dz.

Find every possible wedge product of two of the forms, in both orders, writing the results in
standard form. Check, for each pair ω, φ of forms, that ω ∧ φ = (−1)deg ω deg φφ ∧ω is satisfied.

4. Calculate the exterior derivative of each of the forms in Exercise 3, giving your answers in
standard form. Compute d(α ∧ β) directly, and check that it equals dα ∧ β + (−1)deg αα ∧ dβ.
Check also that d( dα) = 0.

5. Let r, θ, φ be spherical polar co-ordinates: i.e. x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ.
Compute dx, dy, dz in terms of dr, dθ, dφ. Moreover, show that

dx ∧ dy ∧ dz = r2 sin θ dr ∧ dθ ∧ dφ.

6. Let f , g be functions and consider the 1-form α = g d f . Show that α ∧ dα = 0. Is it possible to
write dx + y dz in R3 in the form g d f ?

7. Let α, β be 1-forms in Rn, with α everywhere non-zero. Show that if α ∧ β = 0 then β is propor-
tional to α (i.e. there is a function f such that β = f α). (Hint: α 6= 0 everywhere, so extend α|p
to a basis of 1-forms at p. Now write β|p in terms of this basis. . . )
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