Math 162B: Differential Geometry Homework 2

Hand in questions 2 and 5 at lecture Wednesday 21st January.

1. Consider the vector fields

$$u = x \frac{\partial}{\partial x} - \frac{\partial}{\partial y}, \qquad v = y \frac{\partial}{\partial x} - xy \frac{\partial}{\partial z},$$

and the 2-forms

$$\alpha = y \, \mathrm{d}x \wedge \mathrm{d}y - z \, \mathrm{d}x \wedge \mathrm{d}z, \qquad \beta = 3 \, \mathrm{d}x \wedge \mathrm{d}z - yz \, \mathrm{d}y \wedge \mathrm{d}z,$$
$$\gamma = z \, \mathrm{d}x \wedge \mathrm{d}y - y \, \mathrm{d}x \wedge \mathrm{d}z + z \, \mathrm{d}y \wedge \mathrm{d}z.$$

Calculate $\alpha(u, v)$, $\beta(u, v)$, $\gamma(u, v)$.

2. Let
$$\mathbf{x}(r,\theta,\phi) = \begin{pmatrix} r\sin\theta\cos\phi\\ r\sin\theta\sin\phi\\ r\cos\theta \end{pmatrix}$$
.

(a) Show that

$$\mathbf{e}_1 := \begin{pmatrix} \sin\theta\cos\phi\\ \sin\theta\sin\phi\\ \cos\theta \end{pmatrix}, \qquad \mathbf{e}_2 := \begin{pmatrix} \cos\theta\cos\phi\\ \cos\theta\sin\phi\\ -\sin\theta \end{pmatrix}, \qquad \mathbf{e}_3 := \begin{pmatrix} -\sin\phi\\ \cos\phi\\ 0 \end{pmatrix}$$

is a moving frame.

- (b) Calculate dx in terms of the moving frame above, in particular finding the 1-forms θ₁, θ₂, θ₃.
 (*Be careful not to confuse the co-ordinate/angle θ with the 1-forms θ_i*).
- (c) Compute the connection 1-forms $\omega_{12}, \omega_{13}, \omega_{23}$.
- (d) Check explicitly that the first and second structure equations hold.
- (e) Suppose that you knew nothing about **x**, or the moving frame \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 , and that you only have your computed 1-forms θ_1 , θ_2 , θ_3 . Solve for the connection 1-forms ω_{ij} just by using the first structure equations.
- 3. Continuing from the previous question, suppose that we identify 1-forms and 2-forms in the co-ordinates r, θ, ϕ with traditional vector fields as follows:

$$\alpha_1\theta_1 + \alpha_2\theta_2 + \alpha_3\theta_3 \longleftrightarrow \alpha_1\mathbf{e}_1 + \alpha_2\mathbf{e}_2 + \alpha_3\mathbf{e}_3,$$

$$\beta_1\theta_2 \wedge \theta_3 + \beta_2\theta_3 \wedge \theta_1 + \beta_3\theta_1 \wedge \theta_2 \longleftrightarrow \beta_1\mathbf{e}_1 + \beta_2\mathbf{e}_2 + \beta_3\mathbf{e}_3,$$

and 3-forms with functions; $\gamma \theta_1 \land \theta_2 \land \theta_3 \longleftrightarrow \gamma$. Use the expressions you found for $\theta_1, \theta_2, \theta_3$ to show that, in spherical polar co-ordinates, we have

$$\nabla f = \frac{\partial f}{\partial r} \mathbf{e}_1 + \frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{e}_2 + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \mathbf{e}_3,$$
$$\nabla \cdot (v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + v_3 \mathbf{e}_3) = \frac{1}{r^2 \sin \theta} \left(\sin \theta \frac{\partial v_1 r^2}{\partial r} + r \frac{\partial v_2 \sin \theta}{\partial \theta} + r \frac{\partial v_3}{\partial \phi} \right)$$

Feel free to calculate the curl too, though it's always much messier!

4. Suppose that $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ is a moving frame of \mathbb{E}^3 , and that $\mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ is a map into \mathbb{E}^3 . Prove that

$$\theta_1 \wedge \theta_2 \wedge \theta_3 = \mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z,$$

regardless of the choice of moving frame. (You will need to compute θ_i in terms of dx, dy, dz and the entries of $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3...$)

5. Let $\mathbf{x} : U \subset \mathbb{R}^2 \to \mathbb{E}^2$ be a smooth map with co-ordinate functions u, v, and suppose that $\mathbf{x}_u, \mathbf{x}_v$ are everywhere orthogonal, so that $\mathbf{x}_u = h\mathbf{e}_1$ and $\mathbf{x}_v = k\mathbf{e}_2$ for functions h, k and a moving frame $\mathbf{e}_1, \mathbf{e}_2$ (h, k are the norms of $\mathbf{x}_u, \mathbf{x}_v$ up to sign). Use the structure equations (calculate $\theta_1, \theta_2, \omega_{12}$, etc.) to show that

$$\frac{\partial}{\partial v} \left(\frac{h_v}{k} \right) + \frac{\partial}{\partial u} \left(\frac{k_u}{h} \right) = 0.$$