Math 162B: Differential Geometry Homework 3

Hand in questions 2, 5 \& 6 at lecture Monday 2nd February

1. Check that the surfaces

$$
\mathbf{x}(u, v)=\left(\begin{array}{c}
u \cos v \\
u \sin v \\
\ln u
\end{array}\right), \quad \mathbf{y}(u, v)=\left(\begin{array}{c}
u \cos v \\
u \sin v \\
v
\end{array}\right)
$$

have the same Gauss curvature at all points of $U=\left\{(u, v) \in \mathbb{R}^{2}: v>0\right\}$, but that \mathbf{x}, \mathbf{y} are not isometric. This example shows that Gauss' Theorem Egregium has no converse.
2. Let $\mathbf{x}(s, t)=\mathbf{y}(s)+t \mathbf{y}^{\prime}(s)$ be the tangent developable of a unit speed curve $\mathbf{y}(s)$ in \mathbb{E}^{3}. Show that $\mathbf{e}_{1}=\mathbf{y}^{\prime}(s), \mathbf{e}_{2}=\kappa^{-1} \mathbf{y}^{\prime \prime}(s)$ are orthogonal vector fields tangent to the surface. Calculate $\theta_{1}, \theta_{2}, \omega_{12}$ for these vector fields, and use these to prove that all tangent developables are flat.
3. Consider the metric $\mathrm{I}=\mathrm{d} r^{2}+r^{2} \mathrm{~d} \phi^{2}$ in polar co-ordinates on \mathbb{R}^{2} with the origin removed. Show that $K=0$. Why is this to be expected?
4. Let $f(x)$ and $g(y)$ be smooth functions. Find the Gauss curvatures of the following metrics:
(a) $\mathrm{I}_{1}=f(x)^{2} \mathrm{~d} x^{2}+g(y)^{2} \mathrm{~d} y^{2}$,
(b) $\mathrm{I}_{2}=g(y)^{2} \mathrm{~d} x^{2}+f(x)^{2} \mathrm{~d} y^{2}$.
5. x, y are Tchebyshev co-ordinates for a surface $\mathbf{x}: U \rightarrow \mathbb{E}^{3}$ if $\mathrm{I}=\mathrm{d} x^{2}+2 \cos \phi \mathrm{~d} x \mathrm{~d} y+\mathrm{d} y^{2}$, where $\phi: U \rightarrow \mathbb{R}$ is some function. Show that \mathbf{x} is pseudospherical with $K=-1$ if and only if ϕ satisfies the Sine-Gordon equation $\phi_{x y}=\sin \phi$. (There is no frame given here, so you'll have to attmpt to find suitable θ_{1}, θ_{2} directly: use the lemma from the course perhaps...)
6. Consider a 2-dimensional simplicifaction of the Schwartzschild metric where the units have been removed: $\mathrm{I}=\left(1-r^{-1}\right) \mathrm{d} t^{2}-\left(1-r^{-1}\right)^{-1} \mathrm{~d} r^{2}$. Writing $\theta_{1}=\left(1-r^{-1}\right)^{1 / 2} \mathrm{~d} t$ and $\theta_{2}=$ $\left(1-r^{-1}\right)^{-1 / 2} \mathrm{~d} r$ we have $\mathrm{I}=\theta_{1}^{2}-\theta_{2}^{2}$. The first structure equations in this situation are

$$
\mathrm{d} \theta_{1}+\omega_{12} \wedge \theta_{2}=0=\mathrm{d} \theta_{2}+\omega_{12} \wedge \theta_{1} .
$$

There is no sign error! The equations are different because the metric is not positive definite: indeed $\omega_{12}=\omega_{21}$! Use the equation $\mathrm{d} \omega_{12}=K \theta_{1} \wedge \theta_{2}$ to show that the curvature is well-defined at $r=1$ (the Schwartzschild radius of this example), only being undefined at $r=0$ (the center of the black hole).
7. The Poincaré disc is an alternative model of hyperbolic space: equip the inside of the unit circle $r<1$ with $\mathrm{I}=\frac{4}{\left(1-r^{2}\right)^{2}}\left(\mathrm{~d} r^{2}+r^{2} \mathrm{~d} \theta^{2}\right)$.
(a) Show that this space has $K=-1$.
(b) (Only for those who like complex analysis) You are given that the map $x+i y=z \mapsto$ $\frac{z-i}{z+i}=r e^{i \phi}$ is a bijective mapping of the upper half plane to the inside of the unit disc (it's a Möbius transform). Prove that this map is an isometry between the hyperbolic space given in lectures and the Poincaré disc.
8. (HARD) Suppose that a domain $U \subset \mathbb{R}^{2}$ is equipped with a metric I. Let $\mu: U \rightarrow \mathbb{R}$ be a smooth function and define a new conformal metric $\hat{I}:=e^{2 \mu}$ I on U. Prove that

$$
\hat{K}=e^{-2 \mu}(K-\triangle \mu)
$$

where $\Delta \mu=v_{1}\left[v_{1}[\mu]\right]+v_{2}\left[v_{2}[\mu]\right]$ is the Laplacian $\left(v_{1}, v_{2}\right.$ are any two vector fields which are orthonormal for the fundamental form I). (Given any K the equation $\Delta \mu=K$ has a solution u : this says that all metrics in 2-dimensions are conformally flat.)

