
Math 162B: Differential Geometry Homework 5

Hand in questions 1,5 & 6 at lecture Friday 27th February. Questions 8 and 9 are beyond the
examinable limits of the course.

1. Consider the torus of revolution, parameterized by

x(u, φ) =

(a±
√

r2 − u2) cos φ

(a±
√

r2 − u2) sin φ
u

 ,

where a > r > 0 are constants. Appeal to the discussion of the geodesic equations for a surface
of revolution to argue that:

(a) Only two lines of constant height u on the torus are geodesics.

(b) If a geodesic starts off at a point with u = r tangent to the φ co-ordinate curve, then the
geodesic will be forever confined to the outer part f > a of the torus.

2. Let v(t) be the parallel transport of a vector v0 along a unit speed geodesic γ(t). Use the
geodesic equations to prove that the angle between v(t) and γ′(t) is constant. (It is quickest to
appeal to question 6 for this, but you can do it in terms of a moving frame)

3. Consider the unit sphere and the tangent vector v = (−1, 0, 0)T at the north pole (0, 0, 1)T.
Perform the parallel transport around the geodesic triangle as described in the notes (down
to the equator, round the equator by φ0 and back to the north pole), and show that the result
is the tangent vector (− cos φ0,− sin φ0, 0)T. (Hint: because of question 2, calculating the parallel
transports along these curves is easy and requires no solving of differential equations)

4. Consider the surface of revolution given by f (u) = 1 + u2 and the curve z(t) = (u(t), φ(t)) =
(t,−t). Calculate ω12(z′) for this curve and find g(t) =

∫ t
0 ω12(z′) dt. Hence show that the

parallel transport of the tangent vector v0 =

0
1
1

 at x(z(0)) =

1
0
0

 is horizontal at t =

1
2

√
(π/2 + 1)2 − 1.

5. Let y : I → E3 be a biregular curve parameterized by arc-length s. Consider the parameterized
surface

x(s, v) = y(s) + vB(s), s ∈ I, v ∈ (−ε, ε), ε > 0,

where B is the binormal vector field of y. For small ε, prove that the image of x is a regular
surface S. Morover, prove that y is a geodesic in this surface (thus all biregular curves are a
geodesic in some surface).

6. Let v, w be vector fields along a curve γ : I → S and D d
dt

the covariant derivative operator.
Prove that

d
dt

(v, w) =
(

D d
dt

v, w
)

+
(

v, D d
dt

w
)

.

1



7. In this question we show that the only curves of constant geodesic curvature on the sphere are
circles.

(a) Let γ(t) be a unit speed curve on the surface of the unit sphere. Argue that the normal
curvature of γ is always κn = 1 (look up the definition in the 162A notes if you’ve forgotten
it).

(b) Show that γ has constant curvature κ if and only if it has constant geodesic curvature κg
and write down the relation between them.

(c) Let γ trace out a circle on the surface of the unit sphere. By choosing spherical polar co-
ordinates such that the (geodesic) center of the circle γ is the north pole (i.e. γ is the curve
θ = θ0, where θ0 is the geodesic radius of γ), find the geodesic curvature of γ in terms of
the geodesic radius of the circle.

(d) Suppose now that γ is a unit speed curve on the surface of the sphere with constant
geodesic curvature κg. Prove that γ′′′ is perpendicular to γ and to γ′′.

(e) Argue that γ′′′ is orthogonal to Dγ′ and thus that it is parallel to γ′.

(f) Conclude that k = γ′ × γ′′ is constant and thus that γ is a circle on the sphere.

8. Suppose that X, Y are vector fields on U. Show that the Lie bracket [X, Y] := X ◦ Y −Y ◦ X is a
vector field on U (Hint: write X = x1

∂
∂u1

+ x2
∂

∂u2
and Y with respect to some co-ordinates u1, u2

and calculate...).

9. Extending question 6, prove that the Levi–Civita connection ∇ on U induced by a surface x
(recall dx(∇XY) = πT dX( dx(Y))) is:

(a) Metric: dX(I(Y, Z)) = I(∇XY, Z) + I(Y,∇XZ);

(b) Torsion-free: ∇XY−∇YX − [X, Y] = 0.

(Think what (a) means in terms of I = dx · dx, while taking dx of (b) will help)
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