Math 162B: Differential Geometry Homework 5

Hand in questions $1,5 \& 6$ at lecture Friday 27th February. Questions 8 and 9 are beyond the examinable limits of the course.

1. Consider the torus of revolution, parameterized by

$$
\mathbf{x}(u, \phi)=\left(\begin{array}{c}
\left(a \pm \sqrt{r^{2}-u^{2}}\right) \cos \phi \\
\left(a \pm \sqrt{r^{2}-u^{2}}\right) \sin \phi \\
u
\end{array}\right)
$$

where $a>r>0$ are constants. Appeal to the discussion of the geodesic equations for a surface of revolution to argue that:
(a) Only two lines of constant height u on the torus are geodesics.
(b) If a geodesic starts off at a point with $u=r$ tangent to the ϕ co-ordinate curve, then the geodesic will be forever confined to the outer part $f>a$ of the torus.
2. Let $\mathbf{v}(t)$ be the parallel transport of a vector \mathbf{v}_{0} along a unit speed geodesic $\gamma(t)$. Use the geodesic equations to prove that the angle between $\mathbf{v}(t)$ and $\gamma^{\prime}(t)$ is constant. (It is quickest to appeal to question 6 for this, but you can do it in terms of a moving frame)
3. Consider the unit sphere and the tangent vector $\mathbf{v}=(-1,0,0)^{T}$ at the north pole $(0,0,1)^{T}$. Perform the parallel transport around the geodesic triangle as described in the notes (down to the equator, round the equator by ϕ_{0} and back to the north pole), and show that the result is the tangent vector $\left(-\cos \phi_{0},-\sin \phi_{0}, 0\right)^{T}$. (Hint: because of question 2 , calculating the parallel transports along these curves is easy and requires no solving of differential equations)
4. Consider the surface of revolution given by $f(u)=1+u^{2}$ and the curve $z(t)=(u(t), \phi(t))=$ $(t,-t)$. Calculate $\omega_{12}\left(z^{\prime}\right)$ for this curve and find $g(t)=\int_{0}^{t} \omega_{12}\left(z^{\prime}\right) \mathrm{d} t$. Hence show that the parallel transport of the tangent vector $\mathbf{v}_{0}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ at $\mathbf{x}(z(0))=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ is horizontal at $t=$ $\frac{1}{2} \sqrt{(\pi / 2+1)^{2}-1}$.
5. Let $\mathbf{y}: I \rightarrow \mathbb{E}^{3}$ be a biregular curve parameterized by arc-length s. Consider the parameterized surface

$$
\mathbf{x}(s, v)=\mathbf{y}(s)+v \mathbf{B}(s), \quad s \in I, v \in(-\epsilon, \epsilon), \epsilon>0
$$

where \mathbf{B} is the binormal vector field of \mathbf{y}. For small ϵ, prove that the image of \mathbf{x} is a regular surface S. Morover, prove that \mathbf{y} is a geodesic in this surface (thus all biregular curves are a geodesic in some surface).
6. Let \mathbf{v}, \mathbf{w} be vector fields along a curve $\gamma: I \rightarrow S$ and $D_{\frac{d}{d t}}$ the covariant derivative operator. Prove that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(\mathbf{v}, \mathbf{w})=\left(D_{\frac{\mathrm{d}}{\mathrm{~d} t}} \mathbf{v}, \mathbf{w}\right)+\left(\mathbf{v}, D_{\frac{\mathrm{d}}{\mathrm{~d} t}} \mathbf{w}\right) .
$$

7. In this question we show that the only curves of constant geodesic curvature on the sphere are circles.
(a) Let $\gamma(t)$ be a unit speed curve on the surface of the unit sphere. Argue that the normal curvature of γ is always $\kappa_{n}=1$ (look up the definition in the 162A notes if you've forgotten it).
(b) Show that γ has constant curvature κ if and only if it has constant geodesic curvature κ_{g} and write down the relation between them.
(c) Let γ trace out a circle on the surface of the unit sphere. By choosing spherical polar coordinates such that the (geodesic) center of the circle γ is the north pole (i.e. γ is the curve $\theta=\theta_{0}$, where θ_{0} is the geodesic radius of γ), find the geodesic curvature of γ in terms of the geodesic radius of the circle.
(d) Suppose now that γ is a unit speed curve on the surface of the sphere with constant geodesic curvature κ_{g}. Prove that $\gamma^{\prime \prime \prime}$ is perpendicular to γ and to $\gamma^{\prime \prime}$.
(e) Argue that $\gamma^{\prime \prime \prime}$ is orthogonal to $D \gamma^{\prime}$ and thus that it is parallel to γ^{\prime}.
(f) Conclude that $\mathbf{k}=\gamma^{\prime} \times \gamma^{\prime \prime}$ is constant and thus that γ is a circle on the sphere.
8. Suppose that X, Y are vector fields on U. Show that the Lie bracket $[X, Y]:=X \circ Y-Y \circ X$ is a vector field on U (Hint: write $X=x_{1} \frac{\partial}{\partial u_{1}}+x_{2} \frac{\partial}{\partial u_{2}}$ and Y with respect to some co-ordinates u_{1}, u_{2} and calculate...).
9. Extending question 6, prove that the Levi-Civita connection ∇ on U induced by a surface \mathbf{x} (recall $\mathrm{d} \mathbf{x}\left(\nabla_{X} Y\right)=\pi^{T} \mathrm{~d}_{X}(\mathrm{~d} \mathbf{x}(Y))$) is:
(a) Metric: $\mathrm{d}_{X}(\mathrm{I}(Y, Z))=\mathrm{I}\left(\nabla_{X} Y, Z\right)+\mathrm{I}\left(Y, \nabla_{X} Z\right)$;
(b) Torsion-free: $\nabla_{X} Y-\nabla_{Y} X-[X, Y]=0$.
(Think what (a) means in terms of $\mathrm{I}=\mathrm{d} \mathbf{x} \cdot \mathrm{d} \mathbf{x}$, while taking $\mathrm{d} \mathbf{x}$ of (b) will help)
