Math 162B: Differential Geometry Homework $5 \frac{1}{2}$

A few extra questions, none for submission.

1. (a) Consider the cylinder $\mathbf{x}(u, \phi)=\left(\begin{array}{c}\cos \phi \\ \sin \phi \\ u\end{array}\right)$ and the curve $\gamma(t)=\mathbf{x}(z(t))$ where $z(t)=$ $(u(t), \phi(t))=\left(t^{2}, t\right)$. Compute the covariant derivative of the tangent vector field to the curve γ on the surface of the cylinder.
(b) Use this to compute the geodesic curvature of γ (use whichever orientation of the cylinder you prefer).
(c) Find a plane curve $\mathbf{y}(t)=\binom{t}{f(t)}$ (in \mathbb{E}^{2}) whose curvature is the same as the geodesic curvature of γ ?
2. (a) Similarly to question 1 , show that the geodesic curvature of the curve $\gamma(t)=\mathbf{x}(z(t))$ where $z(t)=(\cos t, \sin t)$ on the surface of the cylinder is 1 .
(b) Given any curve $z(t)=(u(t), \phi(t))$, show by calculation that the plane curvature of $z(t)$ is equal to the geodesic curvature of $\gamma(t)=\mathbf{x}(z(t))$ up to a sign determined by the orientation of the cylinder.
(c) Give a fast geometric argument for why part (b) is true and why it will not be true for curves on a general surface.
3. Directly calculate the integral of the 1 -form $\alpha=x y \mathrm{~d} y$ over the unit circle in \mathbb{R}^{2}. Why is the answer obvious using Stokes' theorem?
4. Suppose Σ is a regular surface with boundary $\partial \Sigma$ and that Σ has no self-intersections. Suppose also that $\beta=2 x y \mathrm{~d} x \wedge \mathrm{~d} y+2 x z \mathrm{~d} x \wedge \mathrm{~d} z$ is a 2 -form on \mathbb{R}^{3}. Show that the integral of β over Σ depends only on the boundary $\partial \Sigma$. Calculate $\int_{\Sigma} \beta$ when $\partial \Sigma$ is the circle $\left\{(x, y, z) \in \mathbb{R}^{3}\right.$: $\left.x^{2}+y^{2}+z^{2}=1, x-z=0\right\}$.
5. (Harder - do question 7 on sheet 6 first) Use the integral of the 1 -form $\alpha=x \mathrm{~d} y$ to calculate the area of a regular n-gon whose vertices lie on a circle of radius 1 . Compute the side length of a regular 17-gon of area 1. Hint: Let the corners of the n-gon have co-ordinates $c_{k}=\left(\cos \frac{2 \pi}{n} k, \sin \frac{2 \pi}{n} k\right)$ for $k=0, \ldots, n-1$. First calculate a restricted to the k th edge joining c_{k}, c_{k+1}.
