Math 162B: Differential Geometry Homework 5 $\frac{1}{2}$

A few extra questions, none for submission.

1. (a) Consider the cylinder $\mathbf{x}(u,\phi) = \begin{pmatrix} \cos\phi \\ \sin\phi \\ u \end{pmatrix}$ and the curve $\gamma(t) = \mathbf{x}(z(t))$ where $z(t) = (u(t),\phi(t)) = (t^2,t)$. Compute the covariant derivative of the tangent vector field to the

 $(u(t), \phi(t)) = (t^2, t)$. Compute the covariant derivative of the tangent vector field to the curve γ on the surface of the cylinder.

- (b) Use this to compute the geodesic curvature of γ (use whichever orientation of the cylinder you prefer).
- (c) Find a plane curve $\mathbf{y}(t) = \begin{pmatrix} t \\ f(t) \end{pmatrix}$ (in \mathbb{E}^2) whose curvature is the same as the geodesic curvature of γ ?
- 2. (a) Similarly to question 1, show that the geodesic curvature of the curve $\gamma(t) = \mathbf{x}(z(t))$ where $z(t) = (\cos t, \sin t)$ on the surface of the cylinder is 1.
 - (b) Given any curve $z(t) = (u(t), \phi(t))$, show by calculation that the plane curvature of z(t) is equal to the geodesic curvature of $\gamma(t) = \mathbf{x}(z(t))$ up to a sign determined by the orientation of the cylinder.
 - (c) Give a fast geometric argument for why part (b) is true and why it will not be true for curves on a general surface.
- 3. Directly calculate the integral of the 1-form $\alpha = xy \, dy$ over the unit circle in \mathbb{R}^2 . Why is the answer obvious using Stokes' theorem?
- 4. Suppose Σ is a regular surface with boundary $\partial \Sigma$ and that Σ has no self-intersections. Suppose also that $\beta = 2xy \, dx \wedge dy + 2xz \, dx \wedge dz$ is a 2-form on \mathbb{R}^3 . Show that the integral of β over Σ depends only on the boundary $\partial \Sigma$. Calculate $\int_{\Sigma} \beta$ when $\partial \Sigma$ is the circle $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, x z = 0\}$.
- 5. (Harder do question 7 on sheet 6 first) Use the integral of the 1-form $\alpha = x \, dy$ to calculate the area of a regular *n*-gon whose vertices lie on a circle of radius 1. Compute the side length of a regular 17-gon of area 1. *Hint: Let the corners of the n-gon have co-ordinates* $c_k = (\cos \frac{2\pi}{n}k, \sin \frac{2\pi}{n}k)$ for k = 0, ..., n 1. First calculate α restricted to the kth edge joining c_k, c_{k+1} .