
Math 162B: Differential Geometry Homework 5 1
2

A few extra questions, none for submission.

1. (a) Consider the cylinder x(u, φ) =

cos φ
sin φ

u

 and the curve γ(t) = x(z(t)) where z(t) =

(u(t), φ(t)) = (t2, t). Compute the covariant derivative of the tangent vector field to the
curve γ on the surface of the cylinder.

(b) Use this to compute the geodesic curvature of γ (use whichever orientation of the cylinder
you prefer).

(c) Find a plane curve y(t) =
(

t
f (t)

)
(in E2) whose curvature is the same as the geodesic

curvature of γ?

2. (a) Similarly to question 1, show that the geodesic curvature of the curve γ(t) = x(z(t)) where
z(t) = (cos t, sin t) on the surface of the cylinder is 1.

(b) Given any curve z(t) = (u(t), φ(t)), show by calculation that the plane curvature of z(t)
is equal to the geodesic curvature of γ(t) = x(z(t)) up to a sign determined by the orien-
tation of the cylinder.

(c) Give a fast geometric argument for why part (b) is true and why it will not be true for
curves on a general surface.

3. Directly calculate the integral of the 1-form α = xy dy over the unit circle in R2. Why is the
answer obvious using Stokes’ theorem?

4. Suppose Σ is a regular surface with boundary ∂Σ and that Σ has no self-intersections. Suppose
also that β = 2xy dx ∧ dy + 2xz dx ∧ dz is a 2-form on R3. Show that the integral of β over
Σ depends only on the boundary ∂Σ. Calculate

∫
Σ β when ∂Σ is the circle {(x, y, z) ∈ R3 :

x2 + y2 + z2 = 1, x− z = 0}.

5. (Harder - do question 7 on sheet 6 first) Use the integral of the 1-form α = x dy to calculate the
area of a regular n-gon whose vertices lie on a circle of radius 1. Compute the side length of a
regular 17-gon of area 1. Hint: Let the corners of the n-gon have co-ordinates ck = (cos 2π

n k, sin 2π
n k)

for k = 0, . . . , n− 1. First calculate α restricted to the kth edge joining ck, ck+1.
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