
Math 162B: Differential Geometry Homework 6

Hand in questions 4, 7 & 11 at lecture Monday 9th March. The questions cover everything up to
the end of the course — this will be the closest to a mock final you get!

1. Prove first that if γ(t) is a curve whose speed is non-unit, then the geodesic curvature of γ is
given by

κgU =
γ′ × D d

dt
γ′

|γ′|3
.

(Just as when we calculated the curvature of a variable speed spacecurve in 162A, reparameter-
ize µ(s) = γ(t(s)) to be unit speed and calculate). Secondly prove that we need not calculate
the covariant derivative directly, that

κg =
(γ′ × γ′′) ·U

|γ′|3
.

2. Consider the vertical cylinder of radius 1 (x2 + y2 = 1) oriented with outward pointing normal,
and its intersection with the plane z = x tan ψ for fixed ψ.

(a) By considering the co-ordinates x̂ =
√

x2 + z2 and ŷ = y in the plane z = x tan ψ, show
that the intersection is an ellipse.

(b) Calculate the curvature, geodesic curvature and normal curvature of this ellipse (it’s prob-
ably easiest to parameterize everything in terms of the rotational angle φ around the cylin-
der).

3. Check that r, θ are oriented co-ordinates for the plane (away from the origin). I.e. check that
dr ∧ dθ is a positive multiple of dx ∧ dy.

4. Let

x(θ, φ) =

sin θ cos φ
sin θ sin φ

cos θ


be the usual polar co-ordinate map for the unit sphere. Calculate x∗( dx1 ∧ dx2) hence show
that the integral of dx1 ∧ dx2 over the unit sphere is zero.

5. What do you get if you integrate

α = x1 dx2 ∧ dx3 + x2 dx3 ∧ dx1 + x3 dx1 ∧ dx2

over a region of the sphere of radius a (use polar co-ordinates).

6. Write out the proof of Stokes’ theorem for a cubic region Σ in R3.

7. Taking the inside of a simple closed curve γ in the plane with its usual orientation, show that
the induced orientation corresponds to traversing γ counter-clockwise. What does

∫
γ x dy cal-

culate?
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8. Take the inside of the unit sphere with usual orientation on R3 - show that the induced ori-
entation on the surface S of the sphere corresponds to taking the outward pointing normal.
Calculate

∫
S x1 dx2 ∧ dx3.

9. Extending question 5, verify Stokes’ theorem for the inside of the unit sphere bounded by the
sphere of radius a where

α = x1 dx2 ∧ dx3 + x2 dx3 ∧ dx1 + x3 dx1 ∧ dx2.

10. Integrate the function f (x) = z over the unit sphere in E3.

11. What is the area of the region of the hyperbolic upper half plane given by a < x < b and
p < y < q where p, q are both positive? Show that the area becomes infinite as p → 0.

12. We have already seen that the surface of revolution

x(u, φ) =

cosh u cos φ
cosh u sin φ

u


is a minimal surface. Calculate the area of this surface between u = −1 and u = 1 and show
that it is less than the area of the cylinder whose boundary is the same two circles.

13. Let a > 0 and calculate the area of the region of the hyperbolic upper half plane bounded by
the three geodesics (x ± a/2)2 + y2 = a2/4 and x2 + y2 = a2.

14. Show that for a geodesic pentagon, the sum of whose five angles is A, we have∫
Kθ1 ∧θ2 = A− 3π.

15. Consider the surface of revolution of a function f (u) between the points u = a and u = b.
Suppose that f has a local minimum at a and a local maximum at b. By considering a geodesic
quadrilateral consisting of half of the lines of latitude at u = a and u = b and the lines of
longditude joining their ends, show that the integral of K over the region of the surface between
u = a and u = b is zero.

16. What (roughly) is the percentage error in assuming that for a geodesic triangle the area of
California (163696 square miles) on the Earth’s surface, the sum of the angles is π? (The radius
of the Earth is approximately 3959 miles).

17. Suppose that x(z(t)) is a geodesic in the surface x, and that x′ = cos ψe1 + sin ψe2. Use the
first geodesic equation (rather than the proof in the notes with κg = 0) to prove directly that
ψ′(t) = ω12(z′).

18. Calculate the Euler characteristic of the sphere by considering the dissections corresponding to
the tetrahedron, octahedron and cube. Check that in each case you get the same answer.

19. Show that if there is a regular solid whose faces are pentagons and such that 3 meet at each
vertex, then there must be 12 faces. How many faces must there be if the faces are equilateral
triangles such that 5 meet at each vertex?
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20. A soccer ball is made by sewing together regular pentagons and hexagons, with three pieces
meeting at each vertex. How many pentagons are there? If you assume also that one pentagon
and two hexagons meet at each vertex, how many hexagons are there?

21. Let Σ be a surface obtained from a sphere by deforming it smoothly. Show that there exists a
point on Σ where K > 0.

22. Given a local surface x : U → E3, regard the unit normal e3 as defining a parameterization of
the unit sphere (we call e3 : U → S2 the Gauss map of x). Show that

de3
∧
× de3 = 2ω13 ∧ω23e3,

and hence deduce that the area form for the Gauss map is Kθ1 ∧ θ2, where K is the Gauss
curvature of the original surface. Hence show that if the Gauss map of an oriented, bounded
surface Σ without boundary is a bijection, then Σ has Euler characteristic 2.

23. Calculate the Euler characteristic of a disc by observing that it is topologically identical to the
upper half of a sphere (conveniently the edge is a geodesic) and using the Gauss–Bonnet theo-
rem.

24. Prove that the area contained inside a circle on a sphere of radius R, the circle’s circumference,
and its (constant) geodesic curvature are related by

κg =
2πR2 −Area

R2 ·Circumference
.

25. Consider a polygon in the plane. To what basic result does the full Gauss–Bonnet theorem
reduce?

26. State the relationship between the Gauss curvature of a surface and the sum of the angles in a
geodesic triangle. Suppose that a surface has K < −1 everywhere. Prove that the area of any
geodesic triangle is less than π.

27. Draw a triangular dissection of a finite length circular cylinder in order to calculate its Euler
characteristic. Verify that the Gauss–Bonnet theorem holds.

28. Consider the torus of revolution parameterized by

x(ψ, φ) =

(a + r sin ψ) cos φ
(a + r sin ψ) sin φ

r cos ψ

 , 0 ≤ ψ, φ < 2π,

where a > r > 0 are constants. Find K and show explicitly that the Gauss–Bonnet theorem
holds for this surface.

29. Let Σ be a simply connected subset of the plane from which a single circular hole has been
removed. Construct a simple dissection of Σ into 2 faces to show that its Euler characteristic
is 0. Generalize the construction to show that a simply connected set from which g holes have
been removed has χ = 1− g.

30. What is the Euler characteristic of a torus from which a single small circular patch has been
removed? Explain.
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