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1 Exterior calculus

1.1 Wedge products and n-forms

Recall the notion of a 1-form α on Rn: if x1, . . . , xn are co-ordinates on Rn, then α = ∑n
i=1 ai dxi is a

1-form, where a1, . . . , an : Rn → R are smooth functions.
We introduce an operation ∧ on 1-forms which satisfies the properties

dxi ∧ dxj = −dxj ∧ dxi, dxi ∧ dxi = 0,

and study the algebra generated by 1-forms under ∧.

Definition 1.1. A multi-index of length k is a list of numbers I = (i1, . . . , ik), 1 ≤ i1, . . . , ik ≤ n (when
in Rn). We write

dxI = dxi1 ∧ · · · ∧ dxik .

A multi-index is increasing if p < q⇒ ip < iq.
A k-form α on Rn is an object of the form

α = ∑
All multi-indices I

of length k

αI dxI ,

where each αI : Rn → R is a smooth function. We also call α a form of degree k.

At the moment the symbol ∧ is just a symbol for denoting k-forms. It will shortly become an
operation. It is clear that at the expense of a minus sign, every multi-index can be put in increasing
order. This is the standard way of writing k-forms. The definition also includes 0-forms: with no
multi-indices, a 0-form is just a function on Rn.

Example.

k R2 R3 R4

0 function f f f
1 α1 dx1 + α2 dx2 α1 dx1 + α2 dx2 + α3 dx3 α1 dx1 + · · ·+ α4 dx4
2 β dx1 ∧ dx2 β1 dx1 ∧ dx2 + · · ·+ β3 dx2 ∧ dx3 β1 dx1 ∧ dx2 + · · ·+ β6 dx3 ∧ dx4
3 None γ dx1 ∧ dx2 ∧ dx3 γ1 dx1 ∧ dx2 ∧ dx3 + · · ·+ γ4 dx2 ∧ dx3 ∧ dx4

4 None None δ dx1 ∧ dx2 ∧ dx3 ∧ dx4



Generally, there are (n
k) components for a k-form on Rn. Note that there are no k-forms on Rn

for k > n. The set of k-forms at p ∈ U ⊂ Rn form a vector space: this should be clear if you
view k-forms as alternating k-linear maps. If x1, . . . , xn are co-ordinates on U, then the set of k-forms
{dxi1 ∧ · · · ∧ dxik : i1 < · · · < ik} forms a basis of this vector space which thus has dimension (n

k).
More concretely, if {α1, . . . , αn} is a basis of 1-forms at p, then the set {αi ∧ αj : i < j} is a basis of the
set of 2-forms at p, and {αi1 ∧· · · ∧αik : i1 ≤ · · · ≤ ik} a basis of the set of k-forms at p.

Definition 1.2. Suppose that k + l ≤ n. The wedge product of a k-form α and an l-form β on Rn is the
(k + l)-form α ∧ β and is formed in the obvious way.

The ‘obvious’ way here can get complicated for large degree forms as the following formula
shows: if α = ∑ αI dxI and β = ∑ β J dx J are k- and l-forms respectively, then

α ∧ β = ∑
All multi-indices I, J

of lengths k, l
respectively

αI β J dxI ∧ dx J ,

where dxI ∧ dx J = dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl . Thankfully in this course, we will rarely
consider higher than 3-forms.

Examples. 1. α = 2 dx1 − 3x1 dx2 and β = (1− x2
2) dx1 + x2 dx2 are 1-forms on R2. Then

α ∧ β = (2 dx1 − 3x1 dx2) ∧ ((1− x2
2) dx1 + x2 dx2)

= 2(1− x2
2) dx1 ∧ dx1 + 2x2 dx1 ∧ dx2 − 3x1(1− x2

2) dx2 ∧ dx1 − 3x2 dx2 ∧ dx2

= (2x2 − 3x1 + 3x1x2
2) dx1 ∧ dx2.

2. α = dx1 + 2 dx2 + x1 dx3 and β = 3x3 dx1 ∧ dx2 − dx2 ∧ dx3 are 1- and 2-forms on R3 respec-
tively. Here we have

α ∧ β = (3x1x3 − 1) dx1 ∧ dx2 ∧ dx3.

Proposition 1.3. If α, β are forms, then

α ∧ β = (−1)deg α deg ββ ∧ α.

Note that a function f is a 0-form and that f ∧ α = f α = α f = α ∧ f , so that the proposition still
holds.

1.2 The exterior derivative

We are used to thinking of d of a function: of a co-ordinate function as dx1 say, or of a more general
function on an open set U; d f = ∑ ∂ f

∂xi
dxi. d is a more general operator on forms of any degree.

Definition 1.4. Given a k-form α = ∑I αI dxI on Rn, the exterior derivative of α is the (k + 1)-form

dα = ∑
I

dαI ∧ dxI ,

where dαI is ‘ d’ of a function.
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Example. In R3, let α = x1x2
2 dx1 − x2 dx3. Then

dα = d(x1x2
2) ∧ dx1 − d(x2) ∧ dx3 = (x2

2 dx1 + 2x1x2 dx2) ∧ dx1 − dx2 ∧ dx3

= −2x1x2 dx1 ∧ dx2 − dx2 ∧ dx3.

Proposition 1.5. For all forms α, β we have

1. d(α + β) = dα + dβ.

2. d(α ∧ β) = dα ∧ β + (−1)deg αα ∧ dβ.

3. d( dα) = 0.

The final result is often written as d2 = 0.

Example. Let f (x1, x2) = x2
1x2 on R2. Then d f = 2x1x2 dx1 + x2

1 dx2, and so,

d( d f ) = d(2x1x2 dx1 + x2
1 dx2)

= 2 d(x1x2) ∧ dx1 + d(x2
1) ∧ dx2

= 2x2 dx1 ∧ dx1 + 2x1 dx2 ∧ dx1 + 2x1 dx1 ∧ dx2 = 0.

Co-ordinate invariance in R2

One of the main advantages that comes with thinking about forms is that they have an inbuilt co-
ordinate invariance; otherwise said, when you change co-ordinates, forms automatically change in
the correct way. Here is an example in R2 \ {0}.

r
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y

p

θ

∂

∂x

∣

∣

p

∂

∂y

∣

∣

p

∂

∂r

∣

∣

p

∂

∂θ

∣

∣

p

Figure 1: Polar co-ordinates

With respect to the standard co-ordinates x, y, any 1-form may be written α = a dx + b dy. The
same 1-form may also be written α = A dr + B dθ in polar co-ordinates. Similarly, any 2-form is a
multiple of dx ∧ dy and simultaneously a multiple of dr ∧ dθ. These must correspond somehow.
Indeed

x = r cos θ
y = r sin θ

⇒ dx = cos θ dr− r sin θ dθ
dy = sin θ dr + r cos θ dθ.

∴ a dx + b dy = r(a cos θ dr + b sin θ dθ).
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Similarly,

dr =
x√

x2 + y2
dx +

y√
x2 + y2

dy, dθ =
−y√

x2 + y2
dx +

x
x2 + y2 dy.

Hence
dx ∧ dy = cos θ · r cos θ dr ∧ dθ − r sin θ · sin θ dθ ∧ dr = r dr ∧ dθ.

Recall this from change of variables in integration: if f (x, y) = g(r, θ), then∫
f (x, y) dx dy =

∫
g(r, θ)r dr dθ.

The change of variables from integration is thus already built into forms. We will come back to forms
and integration earlier, though we’ve already seen its first steps: 1-forms are integrated along curves,
2-forms will be what we integrate over surfaces, 3-forms over 3-dimensional regions, etc..

1.3 Forms as multi-linear maps

A k-form α at a point p ∈ Rn is a multi-linear, alternating map

α|p : TpRn × · · · × TpRn︸ ︷︷ ︸
k times

→ R

from k copies of the tangent space at p to R. The following formula can be taken either as a definition
of a k-form, or as the definition of the determinant in terms of forms, depending on your preference.
If α = α1 ∧ · · · ∧ αk is a k-form where each αi is a 1-form, and v1, . . . , vk ∈ TpRn are vectors, then

α(v1, . . . , vk) =

∣∣∣∣∣∣∣∣∣
α1(v1) · · · α1(vk)
α2(v1) · · · α2(vk)

...
...

αk(v1) · · · αk(vk)

∣∣∣∣∣∣∣∣∣ .

Alternating means that if you swap the positions of any two of the vi, the result changes sign. This is
equivalent to swapping two rows in the determinant.

Example. Let β = dx1 ∧ dx2 + x3 dx2 ∧ dx3 be a 2-form on R3, and let u = ∂
∂x1
− ∂

∂x3
, v = x2

∂
∂x2

+ ∂
∂x3

.
Now,

( dx1 ∧ dx2)(u, v) =
∣∣∣∣dx1(u) dx1(v)

dx2(u) dx2(v)

∣∣∣∣ = x2, ( dx2 ∧ dx3)(u, v) = x2

∴ β(u, v) = x2(1 + x3).

Definition 1.6. In E2, the 2-form dx ∧ dy is the standard area form. Indeed if u, v are two vectors, then

dx ∧ dy(u, v) =
∣∣∣∣u1 v1
u2 v2

∣∣∣∣ = u1v2 − v1u2

is the signed area of the parallelogram spanned by u, v.

Similarly dx∧dy∧dz is the standard volume form on E3. These terms will become clearer when
we study integration.
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1.4 An aside on vector calculus

The standard vector calculus operations of div, grad and curl in E3 are closely related to ‘ d’. For
example, the curl of a vector field v = α1i + α2j + α3k is

∇× v =

∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

α1 α2 α3

∣∣∣∣∣∣ =
(

∂α3

∂y
− ∂α2

∂z

)
i +
(

∂α1

∂z
− ∂α3

∂x

)
j +
(

∂α2

∂x
− ∂α1

∂y

)
k,

while the exterior derivative of the 1-form α = α1 dx + α2 dy + α3 dz is

dα =
(

∂α2

∂x
− ∂α1

∂y

)
dx ∧ dy−

(
∂α1

∂z
− ∂α3

∂x

)
dx ∧ dz +

(
∂α3

∂y
− ∂α2

∂z

)
dy ∧ dz.

Comparing coefficients gives part of the following table: start on any line and compare what d does
to the form with what the corresponding vector calculus operation does to the object on the right
hand side.

Forms Traditional vector fields

function f

d
��

←→ f

∇•grad
��

1-form α1 dx + α2 dy + α3 dz

d
��

←→ α1i + α2j + α3k

∇×•curl
��

2-form β1 dy ∧ dz + β2 dz ∧ dx + β3 dx ∧ dy

d
��

←→ β1i + β2j + β3k

∇·•div
��

3-form γ dx ∧ dy ∧ dz ←→ function γ

The single ‘ d’ operator is grad, div and curl all in one!
The differential form notation has two distinct advantages over traditional vector calculus: it

works in all co-ordinate systems and all dimensions.
The forms result d2 = 0 translates to the 2 theorems,

∇× (∇ f ) = 0, ∇ · (∇× v) = 0.

With a little calculation it can be seen that the wedge product of 1-forms translates to taking the
cross product of vectors, while the wedge product of a 1-form and a 2-form corresponds to taking
the dot product. Complicated formulae from vector calculus can be easily proved this way; e.g. let f
be a function and α a 1-form. Then,

d( f ∧ α) = d f ∧ α + dα ∧ f = d f ∧ α + f dα

l
∇× f v = ∇ f × v + f∇× v.

5



Similarly, if α, β are 1-forms, we have

d(α ∧ β) = dα ∧ β− α ∧ dβ

l
∇ · (u× v) = (∇× u) · v− u · (∇× v).

2 Moving frames and the structure equations

2.1 Maps Rm → E3

Definition 2.1. A moving frame for a smooth map x : U ⊂ Rm → E3, written

x(u1, . . . , um) =

x1(u1, . . . , um)
x2(u1, . . . , um)
x3(u1, . . . , um)

 ,

is a triple of maps ei : U → E3, i = 1, 2, 3, such that (e1(p), e2(p), e3(p)) is an oriented orthonormal
basis of E3 for each p = (u1, . . . , um) ∈ U.

p

q

r

U

x
e1(p)

e2(p)

e3(p)

x(p)
e1(q)

e2(q)

e3(q)

x(q) e1(r)

e2(r)
e3(r)

x(r)

E
3

Figure 2: A moving frame

A moving frame is usually chosen in a way that is suited to the map x.

Examples. 1. m = 1. x : U → E3 is a smooth curve. If x is biregular, we can choose (e1, e2, e3) =
(T, N, B) to be the Frenet frame.

2. m = 3. If x is the cylindrical polar co-ordinate map

x : (r, φ, z) 7→

r cos φ
r sin φ

z

 ,

then it would be sensible to choose the moving frame

er :=
∂x
∂r

=

cos φ
sin φ

0

 , eφ := r−1 ∂x
∂φ

=

− sin φ
cos φ

0

 , ez =
∂x
∂z

=

0
0
1

 ,
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so that the moving frame’s axes point in the directions of change with respect to the three
variables.1

3. m = 2. x is a parameterized surface. One direction at least is specified: fix an orientation on the
surface and choose a moving frame with e3 = U, the unit normal.

Definition 2.2. If x =

x1
x2
x3

 : U → E3 is a smooth function, the we write dx for its exterior deriva-

tive:

dx =

dx1
dx2
dx3

 .

dx is a matrix of 1-forms, or an E3-valued 1-form, since it maps tangent vectors in U to vectors in E3.

Example. Recalling the cylindrical co-ordinate map, we have

dx =

cos φ dr− r sin φ dφ
sin φ dr + r cos φ dφ

dz

 = xr dr + xφ dφ + xz dz = er dr + reφ dφ + ez dz.

2.2 Connection forms and the structure equations

In this section we consider a map x : U ⊂ Rm → E3, and a moving frame e1, e2, e3. Instead of simply
thinking about how the map x changes (i.e. about dx), we split the problem into two: describe how
x moves with respect to the moving frame, and describe how the frame itself moves. If the frame is
chosen sensibly with respect to the map, then the answer to the first problem should be simple, and
we transfer the difficulty to thinking about how the frame moves. While this may seem to increase
the complexity, it in fact improves matters, even allowing the application of group theory to the
problem.2

First we define 1-forms on U which encode how x changes with respect to the moving frame:

θk := dx · ek, k = 1, 2, 3.

Proposition 2.3. dx = ∑3
k=1 θkek.

Proof. Since, at each point p ∈ U, e1, e2, e3 form a basis of E3, it is clear that dx = ∑3
k=1( dx · ek)ek =

∑3
k=1 θkek.

Examples. 1. If x : U → E3 is a parameterized curve x(t), then dx = x′ dt. If we take (e1, e2, e3) =
(T, N, B) to be the Frenet frame, then θ1 = |x′| dt, while θ2 = θ3 = 0.

2. In the cylindrical co-ordinate example

θ1 = dx · e1 = dr, θ2 = r dφ, θ3 = dz.

1The fact that these directions are orthogonal is a special property of cylindrical co-ordinates which is not true for
general co-ordinate systems.

2Indeed this process and its generalizations to higher dimensions and more specialized situations is one of the main
ways that group theory finds applications in Physics.
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If we now assemble the moving frame into a row matrix E = (e1, e2, e3), and introduce the vector

of 1-forms θ =

θ1
θ2
θ3

, then Proposition 2.3 can be written,

dx = (e1, e2, e3)

θ1
θ2
θ3

 = Eθ. (2.1)

Now we consider how the frame moves with respect to itself.

Definition 2.4. Define the connection forms ωjk of the moving frame E by,

ωjk = ej · dek,

where · is the standard dot product on E3.

Lemma 2.5. ωjk = −ωkj (hence ωjj = 0) and moreover,

dek =
3

∑
j=1

ejωjk.

Proof. Just apply ‘ d’ to the dot product ej · ek = δjk.

The proof of the following theorem is then a simple calculation from Lemma 2.5.

Theorem 2.6. Let ω be the 3× 3 skew-symmetric matrix of 1-forms,

ω =

 0 ω12 ω13
−ω12 0 ω23
−ω13 −ω23 0

 .

Then the term-by-term exterior derivative of the moving frame is given by,

dE = ( de1, de2, de3) = Eω. (2.2)

Compare (2.1) and (2.2): the first writes the differential of the map x in terms of the frame E, while
the second writes the differential of the frame with respect to itself.

Examples. 1. Returning once again to our cylindrical co-ordinate example, we have,

de3 = 0⇒ ω13 = e1 · de3 = 0 = ω23 = e2 · de3,

de2 =

− cos φ dφ
− sin φ dφ

0

⇒ ω12 = −dφ.

2. Let x(t) be a biregular curve with speed v, curvature κ, torsion τ, and choose the moving frame
(e1, e2, e3) = (T, N, B) to be the Frenet frame of x. In the language of this section,

dx =
dx
dt

dt = x′ dt = vT dt = ve1 dt⇒ θ1 = v dt, θ2 = θ3 = 0.
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Moreover, the Frenet–Serret equations imply that,

ω12 = −vκ dt, ω13 = 0, ω23 = −vτ dt.

In this context, Theorem 2.6 is exactly the Frenet–Serret equations multiplied through by the
1-form dt.

Inspired by the link to the Frenet equations for a curve, we now turn to the analogues for the map
x.

Theorem 2.7. θ and ω satisfy the first structure equations dθ + ω ∧ θ = 0. This is equivalent to the three
equations,

dθ1 + ω12 ∧ θ2 + ω13 ∧ θ3 = 0,
dθ2 −ω12 ∧ θ1 + ω23 ∧ θ3 = 0,
dθ3 −ω13 ∧ θ1 −ω23 ∧ θ2 = 0.

Proof. Since d2 = 0, we have,

0 = d2x = d( dx) = d(Eθ) = dE ∧ θ + E dθ = E(ω ∧ θ + dθ).

Writing α = dθ + ω ∧ θ and multiplying out, we see that ∑3
i=1 eiαij = 0 for each j = 1, 2, 3. The linear

independence of the ei forces all 9 coefficients αij to be zero, hence dθ + ω ∧ θ = 0.

Theorem 2.8. The connection form ω satisfies the second structure equations dω + ω ∧ ω = 0. This is
equivalent to the three equations,

dω12 −ω13 ∧ω23 = 0,
dω13 + ω12 ∧ω23 = 0,
dω23 −ω12 ∧ω13 = 0.

Proof. 0 = d( dE) = d(Eω) = dE ∧ω + E dω = Eω ∧ω + E dω.

The first and second structure equations are easier to remember if we use the fact that ωij = −ωji,
for then they read,

dθi + ∑
j 6=i

ωij ∧ θj = 0, (2.3)

dωij + ωik ∧ωkj = 0, i, j, k distinct. (2.4)

It is straightforward to see the forms for our cylindrical co-ordinate example satisfy both structure
equations. It is less easy to see that the ωij are in fact determined by the structure equations and the
θi. In this example we have,

θ1 = dr, θ2 = r dφ, θ3 = dz, dθ1 = dθ3 = 0, dθ2 = dr ∧ dφ.

The first structure equations then give us,

dθ1 = 0 = −ω12 ∧ r dφ−ω13 ∧ dz
dθ2 = dr ∧ dφ = ω12 ∧ dr−ω23 ∧ dz
dθ3 = 0 = ω13 ∧ dr + ω23 ∧ r dφ

 .

A little thought leads us through the following:
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• ω13 is a combination of dφ and dz by the first equation, and of dr and dφ by the third. Since
dr, dφ, dz are linearly independent at each point we must have ω13 a multiple of dφ only. Write
ω13 = ra dφ for some function a.

• The first and third equations now say that ω12 = b dφ + a dz, ω23 = a dr + c dφ, for some
functions b, c.

• Plugging all this into the second equation yields

dr ∧ dφ = b dφ ∧ dr + a dz ∧ dr− a dr ∧ dz− c dφ ∧ dz,
∴ (1 + b) dr ∧ dφ + 2a dr ∧ dz + c dφ ∧ dz = 0.

• The linear independence of the above three 2-forms at each point guarantees that all coefficients
are zero so that a = c = 0 and b = −1, thus recovering ωij.

The point of the above exercise is to see that the connection 1-forms of a moving frame are gen-
erally determined directly by the forms θi. In practical examples (surfaces later for instance), the θi’s
are synonymous with the induced metric of the surface. This method of imposing a metric (choice of
first fundamental form), and calculating the connection 1-forms from it is critical in physical appli-
cations — we shall do a little of this later. It will be seen that the Gauss curvature of a surface can be
calculated directly from the connection 1-forms. The generalization of this to higher dimensions is
the method by which the Riemann curvature tensor of the (Levi–Civita) connection of a metric is calcu-
lated. Indeed the relationship between a surface/manifold, metric, connection and Gauss/Riemann
curvature is precisely what Physicists are talking about when they say that ‘Spacetime is curved’.

The structure equations are important in the same way that the Frenet–Serret equations are im-
portant for curves: they tell you everything there is to know about a moving frame. As such, it is a
standard method in differential geometry to use the method of the moving frame, reducing geometric
problems to differential equations. The trick, of course, is to choose your frame so that the equations
are not too difficult. The following Theorem may be regarded as the analogue of the Fundamental
Theorem of biregular spacecurves.

Theorem 2.9. Let the domain U be simply connected. Given forms ωjk satisfying the second structure equa-
tions, and given a frame e1(p), e2(p), e3(p) at a point p ∈ U, there exists a unique moving frame e1, e2, e3
on U which agrees with the given frame at p and has the ωjk as connection forms. Furthermore, if we are
also given forms θk satisfying the first structure equations and one specifies x(p), then there is a unique map
x : U → E3 with x(p) as specified, and for which θk = dx · ek.

The structure equations in other dimensions

The first and second structure equations are equations relating 2-forms. Since these vanish when
m = 1, the structure equations tell us nothing about curves.

In the case of maps x : U ⊂ Rm → E2, any moving frame has only two directions e1, e2, hence
there is only one connection 1-form ω12. The first structure equations then reduce to,

dθ1 + ω12 ∧ θ2 = 0 = dθ2 −ω12 ∧ θ1.
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When m = 2, we have θ1, θ2 forming a basis of 1-forms at each point, hence ω12 = aθ1 + bθ2 for some
functions a, b. Plugging this into the first structure equations yields

dθ1 + aθ1 ∧ θ2 = 0 = dθ2 + bθ1 ∧ θ2.

Since dθ1, dθ2 are also multiples of θ1 ∧ θ2, it is clear that a, b are uniquely determined by the first
structure equations, and thus so is ω12. The second structure equation(s) simply read dω12 = 0.

In higher dimensions the first structure equation stays exactly as in (2.3), while the second be-
comes only slightly more complicated, with (2.4) being replaced with

dωij + ∑
k 6=i,j

ωik ∧ωkj = 0.

Understanding this one equation in a given geometric context is the key to understanding that ge-
ometry.

Group theory and differential geometry One of the main places group theory appears in geom-
etry is in the study of moving frames. We have seen that knowing a moving frame together with the
1-forms θ is equivalent to knowing the map x. Thus it is often desirable to study the frame itself as a
single object: but where does it live? In our examples, we are think about the frame E = (e1, e2, e3)
as taking values in the set of 1× 3 matrices whose three entries form an orthonormal basis of E3. If
instead we think of the ei as column vectors with respect to some (indeed any!) fixed basis of E3,
then E may be viewed as taking values in the Special Orthogonal group SO(3). As such, the study
of maps into E3 is often reduced to the study of maps into SO(3). This idea can be generalized and
many different groups can be considered as the universe of choice for a problem.

2.3 Surfaces and moving frames

Definition 2.10. Let x : U → E3 be an oriented local surface. An adaptive frame to the surface is any
moving frame s.t. e3 = U.

Note that there are an enormous number of adaptive frames since we are still free to rotate the
other two basis vectors about U.

In an adaptive frame, θ3 = 0 and thus dx = e1θ1 + e2θ2. The first and second structure equations
now become the structure equations for a surface,

dθ1 + ω12 ∧ θ2 = 0
dθ2 −ω12 ∧ θ1 = 0

First structure equations

ω13 ∧ θ1 + ω23 ∧ θ2 = 0 The Symmetry equation
dω12 −ω13 ∧ω23 = 0 The Gauss equation
dω13 + ω12 ∧ω23 = 0
dω23 −ω12 ∧ω13 = 0

The Codazzi equations.

Furthermore, we have:
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e1

e2

e3

e1

e2

e3

e1

e2

e3

Figure 3: An adaptive frame on the sphere

Proposition 2.11. In an adaptive frame,

I = θ2
1 + θ2

2 , II = −(θ1ω13 + θ2ω23).

Proof.

I = dx · dx = |θ1e1 + θ2e2|2 = θ2
1 + θ2

2 .
II = −dx · dU = −(θ1e1 + θ2e2) · de3 = −(θ1e1 + θ2e2) · (e1ω13 + e2ω23) = −(θ1ω13 + θ2ω23).

Example. Consider the sphere x2 + y2 + z2 = 1 parameterized by

x =

x
y
z

 =

sin θ cos φ
sin θ sin φ

cos θ

 , θ ∈ (0, π), φ ∈ [0, 2π),

together with the moving frame

e1 =

cos θ cos φ
cos θ sin φ
− sin θ

 , e2 =

− sin φ
cos φ

0

 , e3 = U =

sin θ cos φ
sin θ sin φ

cos θ

 .

Here dx = e1 dθ + sin θe2 dφ so that θ1 = dθ, θ2 = sin θ dφ. It is easy to see that

ω12 = − cos θ dφ, ω13 = dθ, ω23 = sin θ dφ,

from which you can check that the structure equations are satisfied. Moreover, using the θi, ωij we
see from the proposition that,

I = dθ2 + sin θ2 dφ2, II = −( dθ2 + sin θ2 dφ2),

which are exactly the expressions obtained in 162A. This frame is plotted in Figure 3.
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Since x is a local surface we have that the differential dx is a 1–1 linear map at each point:
i.e. dx|p : TpU → {tangent vectors to x at p} is a bijective linear map for each p. It follows that
θ1, θ2 form a basis of the space of 1-forms at each point. This suggests the following:

Lemma 2.12. There exist unique functions a, b, c s.t.,

ω13 = aθ1 + bθ2, ω23 = bθ1 + cθ2.

Proof. That ω13aθ1 + bθ2, ω23 = b̂θ1 + cθ2 are linear combinations of θ1, θ2 is automatic. The sym-
metry equation then implies that

0 = ω13 ∧ θ1 + ω23 ∧ θ2 = (−b + b̂)θ1 ∧ θ2.

The above gives us that II = −aθ2
1 − 2bθ1θ2 − cθ2

1 .

Proposition 2.13. The Gauss and mean curvatures are given by,

K = ac− b2, H = − 1
2 (a + c).

Proof. First we construct a dual basis to θ1, θ2. The map z 7→ dx(z) is invertible at each point, so let
v1, v2 be the vector fields on U defined such that dx(vi) = ei for i = 1, 2. Writing dx = e1θ1 + e2θ2
implies that

θi(vj) = δij =

{
1 i = j,
0 i 6= j.

v1, v2 are orthonormal with respect to I.
Now we solve for the Gauss and mean curvatures with respect to the basis v1, v2 at each point.

The matrices of I, II with respect to this basis are the identity and
(
−a −b
−b −c

)
respectively. We find the

principal curvatures (eigenvalues of II with respect to I) by solving,

0 = det
((
−a −b
−b −c

)
− λ

(
1 0
0 1

))
= (a + λ)(c + λ) + b2 = λ2 + (a + c)λ + ac− b2.

Recalling that (λ− k1)(λ− k2) = λ2 − 2Hλ + K gives the required expressions for K and H.

Since our exterior calculus doesn’t mention co-ordinates at all, it is clear from this proposition
that K, H are independent of any choice of co-ordinates on a surface.

With our expressions for ω13, ω23 we have

ω13 ∧ω23 = (aθ1 + bθ2)(bθ1 + cθ2) = (ac− b2)θ1 ∧ θ2,

from which follows:

Theorem 2.14. The Gauss equation is equivalent to,

dω12 = K θ1 ∧ θ2.

13



The theorem often gives a faster method of calculating the Gauss curvature of a surface than using
the linear algebra method from 162A. In particular, you should observe that we need only calculate
1-forms that are related to the tangent part of the moving frame: θ1, θ2 decompose dx in terms of the
tangent vectors e1, e2, while ω12 describes how that tangent vector fields e1, e2 change with respect
to each other. The unit normal e3 doesn’t need to be considered, or calculated. Here are a couple of...

Examples. 1. With the unit sphere,

dω12 = sin θ dθ ∧ dφ = θ1 ∧ θ2 ⇒ K = 1.

2. The unit cylinder parameterized by co-ordinates (φ, z) has the moving frame

e1 =

− sin φ
cos φ

0

 , e2 =

0
0
1

 , e3 = e1 × e2 (don’t need),

from which we see that ω12 = 0, so that dω12, and thus K, are both zero.

3. Consider the catenoid

x(u, φ) =

cosh u cos φ
cosh u sin φ

u

 .

A moving frame here is

e1 =
1

cosh u

sinh u cos φ
sinh u sin φ

1

 , e2 =

− sin φ
cos φ

0

 , e3 =
1

cosh u

− cos φ
− sin φ
sinh u

 .

Again, we needn’t have calculated e3. Thus ω12 = e1 · de2 = − tanh u dφ. But here dx =
cosh u(e1 du + e2 dφ), so that θ1 = cosh u du and θ2 = cosh u dφ. The Gauss equation says that,

dω12 = − sech2 u du ∧ dφ = − sech4 uθ1 ∧ θ2 ⇒ K = − 1
cosh4 u

.

As an example of how exterior calculus is often used, we re-prove a theorem from 162A:

Theorem 2.15. If every point on a surface is umbilic, then the surface is (part of a) round sphere.

Proof. We have II = λI, where λ might be a function. It follows that, with respect to an adapted frame,
we have a = c = −λ and b = 0. Indeed ω13 = aθ1 and ω23 = aθ2. Taking exterior derivatives and
appealing to the Codazzi equations gives us

0 = dω13 + ω12 ∧ω23 = da ∧ θ1 + a dθ1 + aω12 ∧ θ2

= da ∧ θ1 − aω12 ∧ θ2 + aω12 ∧ θ2 = da ∧ θ1.

Similarly da ∧ θ2 = 0. Since θ1, θ2 form a basis at each point, we have da = 0 and so a is constant.
Now define c = x− 1

a e3 and calculate

dc = θ1e1 + θ2e2 −
1
a
(ω13e1 + ω23e2) = 0.

x thus lies on the sphere of radius a−1 and center c.

14



3 Isometry, Gauss’ Theorem Egregium, and Riemannian Geometry

In this section we consider isometries, both local and global and their effects of curvature. We fin-
ish by discussing Riemannian Geometry: how the imposition of an abstract first fundamental form
induces curvature.

3.1 Invariance under Euclidean motions

There are two types of isometry to consider when it comes to surfaces.

Definition 3.1. Two surfaces x, x̂ are globally isometric if they differ by an isometry of E3. That is
x̂ = Ax + b, where A is a constant orthogonal linear transformation3 and b is a constant vector.
Two surfaces x, x̂ are locally isometric if their first fundamental forms are identical; Î = I.

In the first case the isometry is direct if det A = 1 and indirect if det A = −1. When the isometry is
direct we often say that x, x̂ are related by a rigid motion or Euclidean motion. In the second case when
Î = I it is usual to say that x, x̂ are simply isometric.

Theorem 3.2. Let x : U → E3 and x̂ : U → E3 be two surfaces related by a direct isometry,

x̂(u, v) = Ax(u, v) + b.

Then the fundamental forms of the two surfaces are equal, and thus so are the two measures of curvature.
If the isometry is indirect, then the Gauss curvature is unchanged, while the mean curvature changes sign.

Proof. Clearly dx̂ = A dx. Since A preserves dot products we have identical first fundamental forms.
Matrices of positive determinant preserve orientation and those of negative determinant reverse it,
so we have

Û =

{
AU direct isometry,
−AU indirect isometry.

Thus dÛ = ±A dU. It follows that ÎI = ±II with a minus sign iff the isometry is indirect.

The converse is also true, though a little harder to prove. Two surfaces with equal fundamental
forms can, for most purposes, be considered equivalent.

Lemma 3.3. Let x : U → E3 be a local surface with first fundamental form I. Let θ1, θ2 be 1-forms on U such
that I = θ2

1 + θ2
2 . Then there exists a unique adaptive frame such that θi = dx · ei.

Proof. Let v1, v2 be the dual vector fields to θ1, θ2. Then ei = dx(vi), i = 1, 2 and e3 = e1 × e2 defines
the frame.

Theorem 3.4 (Bonnet). Suppose that x, x̂ : U → E3 are local surfaces with identical first and second funda-
mental forms. Then x, x̂ differ by a Euclidean motion.

33× 3 orthogonal matrix with respect to any fixed basis of E3.
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Proof. First we show that there exist moving frames for which the connection 1-forms and forms θi
are identical for both maps. We use these frames to define an orthogonal matrix A, use the structure
equations to show that A is constant, and then calculate that x̂− Ax is constant.

With respect to a choice of adaptive frame E = (e1, e2, e3), we have I = θ2
1 + θ2

2 . By Lemma 3.3
there exists a unique moving frame Ê = (ê1, ê2, ê3) of x̂ with θ̂i = θi, i = 1, 2.

Writing the identical second fundamental forms in terms of coefficients a, b, c, â, b̂, ĉ we have

ÎI = −âθ̂2
1 − 2b̂θ̂1θ̂2 − ĉθ̂2

2 = −aθ2
1 − 2bθ1θ2 − cθ2

2 = II.

Evaluating these on the pairs (v1, v1), (v1, v2), (v2, v2) respectively yields â = a, b̂ = b, ĉ = c. It follows
that ω̂13 = ω13 and ω̂23 = ω23.

Now consider the first structure equations for both surfaces: since θ̂i = θi we have

dθ1 + α ∧ θ2 = 0 = dθ2 − α ∧ θ1,

for α = ω12 and ω̂12 respectively. It follows that β := ω̂12 − ω12 satisfies β ∧ θ1 = 0 = β ∧ θ2. Hence
β = 0. We thus have that the moving frames E, Ê have identical connection 1-forms ω̂ = ω.

Define a (possibly non-constant) orthogonal matrix A by Ê = AE = (Ae1, Ae2, Ae3). Then

dÊ = ( dA)E + A dE = ( dA)E + AEω = ( dA)E + Êω̂.

It follows that dA = 0 and A is constant. Finally note that

dx̂ = θ̂1ê1 + θ̂2ê2 = A(θ1e1 + θ2e2) = A dx = d(Ax).

Thus x̂ = Ax + b for some constant vector b and orthogonal A (note that det A = 1 since both E, Ê
are oriented frames).

We could have appealed to Theorem 2.9 to see that x̂ is determined from ω̂ = ω and θ̂ = θ by
initial conditions.

3.2 Gauss’ Theorem Egregium

We have already used differential forms and moving frames for a new method to compute the Gauss
curvature. We can improve on this even further, so that you need not even compute the moving
frame.

1. Find I.

2. Write I = θ2
1 + θ2

2 . Do this by inspection or by finding an adaptive frame.

3. Solve the first structure equations for ω12.

4. Use the Gauss equation to find K.

This process is, in most cases, much easier than trying to solve for the eigenvalues of II with I. Not
only that, but you needn’t calculate the moving frame if you can find θ1, θ2 by inspection. A Lemma
below shows that it is always possible to write a first fundamental form as θ2

1 + θ2
2 .
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Examples. 1. A surface of revolution. x =

 f (u) cos φ
f (u) sin φ

u

.

(a) I = (1 + f ′(u)2) du2 + f (u)2 dφ2.

(b) θ1 =
√

1 + f ′(u)2 du, θ2 = f (u) dφ.

(c) dθ1 = 0 = −ω12 ∧ θ2, dθ2 = f ′(u) du ∧ dφ = ω12 ∧ θ1. Hence,

ω12 = − f ′(u)√
1 + f ′(u)2

dφ.

(d) Here we have

dω12 = − f ′′(u)√
1 + f ′(u)23 du ∧ dφ = − f ′′(u)

f (u)(1 + f ′(u)2)3 θ1 ∧ θ2,

so that K = − f ′′

f (1+ f ′2)3 .

2. Let x(x, y) =

x2

y
y2

, then I = 4x2 dx2 +(1 + 4y2) dy2. Choosing θ1 = 2x dx and θ2 =
√

1 + 4y2 dy

we have dθ1 = 0 = dθ2. By the structure equations ω12 = 0 and so K = 0.

Since the first fundamental form encodes what angle and length mean for inhabitants of the sur-
face, the local geometry of isometric surfaces is the same for an ant living on said surfaces. By an
ant inhabiting a surface we mean that the ant has no notion of what ‘outside’ the surface means, or
normal to the surface: all his experience comes intrinsically from the surface. The following theorem
says that the Gauss curvature of a surface may, in principle, be detected by an ant.

Theorem 3.5 (Gauss’ Theorem Egregium). Isometric surfaces have the same Gauss curvature.

Proof. If Î = I then, by Lemma 3.3 we may choose the same θ1, θ2 for each surface. By the above
method we get the same K in each case.

Definition 3.6. A surface with K ≡ 0 is called flat.

Example. A cone can be opened out and laid flat as part of a plane, hence K = 0. The same is true
for a cylinder. Algebraically, the cone below is sliced along the line φ = 0 and laid flat as in Figure 4.az cos φ

az sin φ
z

 7→ (1 + a2)

z cos
(

a√
1+a2 φ

)
z sin

(
a√

1+a2 φ
) .

Conversely to the fact that the Gauss curvature is intrinsic (detectible by our hypothetical ant),
the mean curvature is not intrinsic. For example, even if our ant decides that his home is flat, he has
no local way to tell whether he is crawling on a plane, a cone, a cylinder, or some other flat surface.
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Figure 4: Unwrapping a cone

A corollary of the Theorem says that no part of a sphere is isometric to part of a plane. This has
applications to map-making for it implies that the perfect map is impossible: any map of part of the
Earth must distort distances in some way.

The Theorem implies that I gives us K without needing to know II. Since the usual formula
K = ln−m2

EG−F2 involves II, there must exist a formula for K involving only E, F, G and their derivatives.
This formula is very complicated and is given below.

Suppose that x1, x2 are co-ordinates on x. The Gauss curvature can be written in terms of the
Christoffel symbols Γk

ij. Let the first fundamental form be written I = E dx2
1 + 2F dx1 dx2 + G dx2

2 =
g11 dx2

1 + (g12 + g21) dx1 dx2 + g22 dx2
2, where g12 = g21 and define gij to be the ij-th entry of the

inverse matrix
( g11 g12

g21 g22

)−1. If we define the Christoffel symbols by,

Γi
jk =

1
2

2

∑
m=1

gim
(

∂gmj

∂xk
+

∂gmk

∂xj
−

∂gjk

∂xm

)
,

then the Gauss curvature is given by,

K = − 1
g11

(
∂Γ2

12
∂x1
− ∂Γ2

11
∂x2

+ Γ1
12Γ2

11 − Γ1
11Γ2

12 + Γ2
12Γ2

12 − Γ2
11Γ2

22

)
.

Working with curvatures in terms of Christoffel symbols is very popular in Physics. Good luck if
that’s where you’re going. . .

3.3 Riemannian geometry

The idea of Riemann geometry is to consider a domain U and specify an abstract first fundamental
form, or metric, without it necessarily having arisen from a map x : U → En. By the above procedure,
it makes sense to talk about (and calculate!) the Gauss curvature of the metric. In this situation there is
no mean curvature or second fundamental form: being no unit normal vector to U, there is simply
no notion of either H or II. To do this in the abstract — without any notion of a moving frame or a
map x — we need a Lemma:

Lemma 3.7. Any first fundamental form can be written as I = θ2
1 + θ2

2 for some 1-forms θi.
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Proof. Suppose that I = a dx2 + 2b dx dy + c dy2 written in co-ordinates x, y. Then

I =
(√

a dx +
b√
a

dy
)2

+

(√
c− b2

a
dy

)2

.

It suffices to check that c− b2/a > 0. This is equivalent to ac− b2 > 0 which asserts the positivity of
the determinant of the matrix of I in these co-ordinates. However first fundamental forms are positive
definite, so the eigenvalues of this matrix are both positive and thus so is the determinant.

There are, in fact, an infinity of possible choices of θi, the above is just an example.

A basic example of Riemannian geometry is hyperbolic space.

Definition 3.8. Two-dimensional hyperbolic space is the upper half-plane equipped with the metric,

I =
( dx)2 + ( dy)2

y2 .

Theorem 3.9. Hyperbolic space has K = −1.

Proof. Take the obvious choice θ1 = y−1 dx, θ2 = y−1 dy and follow the recipe. Thus if ω12 = a dx +
b dy, then

0 = dθ1 + ω12 ∧ θ2 = (y−2 + ay−1) dx ∧ dy,

0 = dθ2 −ω12 ∧ θ1 = by−1 dx ∧ dy,

so that ω12 = −y−1 dx. Then dω12 = y−2 dy ∧ dx = −θ1 ∧ θ2. Thus K = −1.

Hyperbolic space could be considered as the negative analogue of the sphere.

Why cut off at y = 0? Consider a curve z(t) = (0, 1− t) where t runs from 0 to 1. The length of the
curve is, ∫ t

0

√
I(z′, z′) dτ =

∫ t

0

1
y

dτ =
∫ t

0

1
1− τ

dτ

= − ln(1− t)→ ∞ as t→ 1.

The x-axis is thus infinitely far away from all points in hyperbolic space. We will think about hyper-
bolic space in the next section on geodesics.

Finding metrics from a prescribed curvature

Since the curvature is determined entirely from the metric, we can ask what metrics give a particular
curvature. This is useful in practical examples because we often want to design a metric that will
have particular curvature properties. For example:

Find all the metrics of the form I = f (r)2 dr2 + r2 dθ2 on R2 which have constant Gauss curvature.
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Here we have θ1 = f (r) dr, θ2 = r dθ. It is not hard to see that ω12 = − 1
f (r) dθ, and that

K =
f ′(r)

r f (r)3 .

We want this to be constant, hence integrate,

f ′(r)
f (r)3 = Kr =⇒ 1

f (r)2 = C− Kr2,

where C is constant. Solving gives

f (r) =
±1√

C− Kr2
, I =

1
C− Kr2 dr2 + r2 dθ.

An example with a singularity

Consider the metric I = (1 + r−2) dr2 + r2 dθ2 on R2 with the origin removed. Here we choose
θ1 =

√
1 + r−2 dr and θ2 = r dθ. Then, writing ω12 = a dr + b dθ, we have

0 = dθ1 + ω12 ∧ θ2 = ar dr ∧ dθ,

0 = dθ2 −ω12 ∧ θ1 = (1 + b
√

1 + r−2) dr ∧ dθ.

Thus ω12 = −(1 + r−2)−1/2 dθ, from which we have,

dω12 = (1/2)(−2r−3)(1 + r−2)−3/2 dr ∧ dθ = − r−4

(1 + r−2)2 θ1 ∧ θ2.

Hence K = −(1 + r2)−2. While it looks like the metric has a singularity at r = 0, in fact the curvature
has limit −1 there. In this example we can visualize the metric as being the first fundamental form of
the surface z = f (r, θ) = ln r, which certainly has a singularity at r = 0. Thus singularities in surfaces
do not necessarily correspond to singularities in the Gauss curvature.

An example with a singularity on a curve

Consider the region of the plane outside the unit circle equipped with the first fundamental form

I = (1− r−1) dr2 + r2 dθ2.

For large r this is close to the standard Euclidean metric, but as we get close to r = 1 the first term
blows up. Here θ1 =

√
1− r−1 dr and θ2 = r dθ. Writing ω12 = a dr + b dθ and applying the structure

equations,

0 = dθ1 + ω12 ∧ θ2 = ar dr ∧ dθ,

0 = dθ2 −ω12 ∧ θ1 = (1 + b
√

1− r−1) dr ∧ dθ,

so that ω12 = −(1− r−1)−1/2 dθ. Thus

dω12 =
1
2
(1− r−1)−3/2r−2 dr ∧ dθ =

1
2r(r− 1)2 θ1 ∧ θ2,
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so that K = 1
2r(r−1)2 . For large r, the curvature is close to zero, but as r → 1 the curvature goes to ∞.

This example cannot be written as the first fundamental form of a surface z = f (r, θ).

A very different curvature is obtained if you start instead with the metric

I = (1− r−1)−1 dr2 + r2 dθ2,

on r > 1. This time we can see that K = − 1
2r3 .

Black holes and Relativity

The previous example can be viewed as a simpler, though far from identical, version of the following
example, which is very much for the Physicists.

Spacetime The following example is a metric on 4-dimensional spacetime, written R1,3. For us this
is identical to R4 but equipped with a first fundamental form I which has 3 orthogonal spacelike
directions ∂

∂x , ∂
∂y , ∂

∂z and one timelike direction ∂
∂t . A tangent vector v ∈ TpR3,1 is

spacelike I(v, v) > 0,
timelike I(v, v) < 0,
lightlike I(v, v) = 0.

I is like a standard first fundamental form in all ways except that it is not positive definite; indeed
I( ∂

∂t , ∂
∂t ) < 0, etc. The standard flat metric of spacetime is

I = dx2 + dy2 + dz2 − c2 dt2,

where c is the speed of light.4 If you think about a tangent vector

v = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
+ vt

∂

∂t
,

then the speed of a particle moving with tangent vector v is the infinitessimal spacial change divided
by the time change, i.e.

speed =

√
v2

x + v2
y + v2

z

|vt|
.

Evaluating gives us
I(v, v) = (speed2 − c2)v2

t ,

from which we see that

v is


spacelike
timelike
lightlike

⇐⇒ speed is


> c,
< c,
= c.

One of the principal ideas of relativity is that physical objects can only travel at speeds less than that
of light: i.e. they must travel only in timelike directions.

4Alternatively I = dr2 + r2 dθ2 + r2 sin2 θ dφ2 − c2 dt2 in spherical polar co-ordinates.
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The effect of mass on spacetime The above ‘standard’ spacetime metric is the background metric
without the presence of any mass, or as a limiting case for deep space where gravity is negligible. It
is the metric of spacetime used in special relativity. In general relativity, the effect of mass/energy is
considered. It affects spacetime by changing the metric. Here is a model of how this might happen:

Consider a rotationally symmetric object of mass m and fix a co-ordinate system (r, θ, φ, t) of
spacetime centered at the star (spherical polar co-ordinates together with time). The Schwarzschild
metric is defined outside the object by

I :=
(

1− 2Gm
c2r

)−1

dr2 + r2 dθ2 + r2 sin2 θ dφ2 − c2
(

1− 2Gm
c2r

)
dt2,

where G is the gravitational constant and c the speed of light.
If we remove the mass the the metric is simply the standard flat metric. Thusfar we have only

considered the Gauss curvature for surfaces or 2-dimensional domains. The Gauss curvature is the
2-dimensional avatar of the more general Riemann curvature tensor. Although we have not intro-
duced this object, its entries5 may be computed in an analogous way to how we calculate the Gauss
curvature in 2-dimensions: i.e. from the 1-forms θi such that I = θ2

1 + θ2
2 + θ2

3 − θ2
4 we can use the

structure equations to find the 6 connection 1-forms ωij, 1 ≤ i < j ≤ 4, the curvature tensor being the
components of the matrix-valued 2-form6 Ω := dω + ω ∧ ω. This is the essence of the notion that
mass/energy curves spacetime.

While we’re not going to calculate the full curvature of the Schwarzschild metric, we can calculate
certain sectional curvature: the Gauss curvature of a 2-dimensional subspace of TpR3,1. In particular

we can calculate the sectional curvature of the space
〈

∂
∂r , ∂

∂t

〉
≤ TpR3,1, which is equivalent to calcu-

lating the Gauss curvature of the metric(
1− 2Gm

c2r

)−1

dr2 − c2
(

1− 2Gm
c2r

)
dt2,

on R2. This can be seen to be K = 2Gm
c2r3 . A homework question walks you through some of this. By

analogy with the previous example, the sectional curvature of the (r, θ)-plane is K = − Gm
c2r3 .

The Schwarzschild metric is only valid outside a mass, thus at the surface of the Earth r = 6× 106

meters, the metric is approximately

I = (1 + 10−9) dr2 + r2 dθ2 + r2 sin2 θ dφ2 − (1− 10−9)c2 dt2,

differing from the standard flat metric by only a tiny tiny amount. Even at the surface of the sun
the difference from the standard metric is only 4.25× 10−6( dr2 − c2 dt2), and the sectional curvature
calculated above is only K = 8.8× 10−24. This very slight difference from flat (K = 0) space is just
detectable. In a famous 1919 experiment of was Eddington and Dyson, the light from stars very
close to the sun was observed during a total eclipse and the bending of light was found to be within
observational error of Einstein’s prediction. This, combined with general relativity’s prediction of the
correct precession of Mercury’s orbit, helped convince people that Einstein had a good theory. The
process of light bending around massive objects is known as gravitational lensing.

The Schwarzschild metric was one of the first explicit non-trivial solutions to Einstein’s equations
of general relativity to be found. Analyzing the curvature of this metric allows Physicists to model

5In n dimensions it has n2(n2 − 1)/12 independent components.
6In 2-dimensions ω =

(
0 ω12
−ω12 0

)
, so that Ω =

(
0 dω12

−dω12 0

)
= K

( 0 1
−1 0

)
θ1 ∧ θ2.
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what an object might experience as it fell towards a huge mass: does it stretch? does its volume
change, etc.

At the time the solution was found, the physical significance of the seeming singularity at the
Schwarzschild radius r = R := 2Gm

c2 was not understood. First of all, for the metric to be valid at
such a radius requires all the mass of the object to be concentrated in the region r < R. Since 2G

c2 ≈
1.485× 10−27 meters per kilogram, the Schwarzschild radius is minuscule for non-stellar masses: for
a human it’s about 10−25 meters, roughly one ten-billionth the size of a proton!, while a Schwarzschild
radius of 1 meter would have to contain 6.733× 1026 kg ≈ 113 times the mass of the Earth. An object
who’s mass is contained entirely within its Schwarzschild radius is a black hole. Here are some of the
predictions of the Schwarzschild black hole model.

• The region of spacetime given by r = R is termed the event horizon. As r gets very close to R
(from above) all terms in the metric become dwarfed by the dr2 term and the metric looks like
it becomes singular. The curvature does not however (we’ve already seen that the sectional
curvature of the (r, t)-plane is finite at the event horizon).

• Suppose you are an observer sitting a long way from the black hole: t is your measure of time.
Now throw a ticking clock towards the black hole. An infinitessimal change dt in t corresponds
(via the metric) to an infinitessimal change (1− R/r) dt in the time on the clock. As r → R,
the time change on the sacrificial clock approaches zero: this is time dilation. It takes an infinite
amount of time as measured by the observer a long way away for the clock to fall in, but
according to the clock, it takes only a finite amount of time.

• A 2-dimensional visualization of the shape of space around a black hole is available if you
fix time and restrict to a constant angle θ = π/2 from the north pole. The metric is then(
1− 2Gm

c2r

)−1
dr2 + r2 dφ2. This is the first fundamental form of the surface z = 2R

√
1− R/r in

polar co-ordinates (see Figure 5).

Figure 5: Representation of a black hole at constant time

• At the Schwarzschild radius r = R, radial and timelike directions switch sign in the metric.
This seems to make no sense until you remember that the metric describes spacetime from the
point of view of an observer at rest. The switching of the signs says that it is impossible to be at
rest inside the event horizon: there can be no stationary observers. No matter what is powering
your spacecraft, it is impossible to resist the pull of the black hole, even light cannot stay still,
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let alone escape from within. Indeed, if you pretend for a moment that classical mechanics
applies, the Schwarzschild radius is exactly the radius for which the escape velocity of a given
mass is the speed of light.

• The center of the black hole at r = 0 is a genuine singularity, both of the metric, and of the
curvature. At present there is no good physical understanding of what this might mean. Since
nothing can be observed with the event horizon of a black hole, no-one knows whether there
really is a singularity of spacetime at the center. There have recently been attempts (e.g. Chap-
line’s Dark Energy star model) to meld quantum physics with relativity to explain what might
happen inside the event horizon.

4 Geodesics, Parallel transport and covariant derivatives

The concept of a geodesic is very important for applications. It replaces the notion of straight line
for surfaces and more complicated objects. For example, it is well-known, and we prove below, that
a straight line is the shortest path between two points in Euclidean space. How would we go about
finding the path of shortest length between two points on a surface?

4.1 Geodesics in Euclidean space

We want to find the shortest curve in E3 joining two given points. Let x(t) be unit speed such that
x(a) = A, x(b) = B. Let ε be a small number, and y : [a, b]→ E3 be a curve such that y(a) = y(b) = 0
and x′ · y = 0. Define

rε(t) = x(t) + εy(t).

Since y is orthogonal to the tangent direction of x, the point rε(t) is obtained from x(t) by a normal
movement for each t. Clearly r(a) = A and r(b) = B so that, for any choice of y, we have a family of
curves rε connecting A and B (see Figure 6).

Figure 6: Family of curves rε
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Definition 4.1. The curve x(t) has stationary length if the lengths `(ε) of the curves rε(t) satisfy,

∂`

∂ε

∣∣∣∣
ε=0

= 0,

for all choices of y(t) as defined above.

Theorem 4.2. The curve x(t) above has stationary length iff it is a straight line.

Proof. Throughout we ignore terms of order ε2 or higher. Since we are eventually evaluating at ε = 0,
and, at most, are performing a single derivative with respect to ε, in the final analysis all such terms
contribute zero to the final answer. Wherever terms of order ε2 or higher have been deleted we use
the ' sign.

Since the derivative of the curve rε is given by r′ε = x′ + εy′, its speed is

vε(t) =
√

r′ε · r′ε =
√
|x′|2 + 2εx′ · y′ + ε2 |y′|2 ' (1 + 2εx′ · y′)1/2 ' 1 + εx′ · y′,

where the final ' uses the Taylor approximation. Then,

∂`

∂ε

∣∣∣∣
ε=0

=
d
dε

∣∣∣∣
ε=0

∫ b

a
vε(t) dt =

∫ b

a
x′ · y′ dt

=
∫ b

a

d
dt

(x′ · y) dt−
∫ b

a
x′′ · y dt

= −
∫ b

a
x′′ · y dt,

since x′ · y = 0. This expression vanishes for all y iff x′′ is parallel to x′. However x has constant
speed, hence x′ · x′′ = 0. Thus x′′ = 0 and so x is a straight line.

The above is a calculus of variations argument. Note that the proposition only shows a straight
line to be of stationary length, not of minimum length. You can think about this as an infinite dimen-
sional calculus problem. However, of all the curves of unit speed between the points A, B, x is the
only one that has stationary length. The function ` : {smooth curves A  B} → R is smooth on
an open set, so if there exists a minimum, then said curve must have stationary length. In fact, the
straight line is the minimum length curve joining two point. We say that straight lines are geodesics
in Euclidean space.

4.2 Geodesics in surfaces

We want to find a unit speed curve x(z(t)) which is the shortest curve between two points in a surface
x. Again we consider curves of the form

rε(t) = x(z(t)) + εy(t),

where y(a) = y(b) = 0 and y · U = 0. rε is thus a curve in E3 which is perturbed a small amount
from x(z(t)) in the tangent direction to x at all points. Note that rε is no longer a curve in the surface
when ε 6= 0.
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Definition 4.3. x(z(t)) has stationary length if, for all such y,

d`

dε

∣∣∣∣
ε=0

= 0.

x(z(t)) is a geodesic if x′′ = d2

dt2 x(z(t)) is normal to the surface everywhere.

Theorem 4.4. A unit speed curve lying in a surface has stationary length iff it is a geodesic.

Proof. The argument begins in the same way as in Theorem 4.2 (recall throughout that x′ = d
dt x(z(t)),

etc.):

∂`

∂ε

∣∣∣∣
ε=0

=
d
dε

∣∣∣∣
ε=0

∫ b

a
vε(t) dt =

∫ b

a
x′ · y′ dt

=
∫ b

a

d
dt

(x′ · y) dt−
∫ b

a
x′′ · y dt

= [x′ · y]ba −
∫ b

a
x′′ · y dt = −

∫ b

a
x′′ · y dt,

where this time the first term vanishes due to y(a) = y(b) = 0. x(z(t)) has stationary length iff
this last term vanishes for all y. But y ·U = 0, hence x′′ cannot have any component tangent to the
surface. x′′ is thus normal.

A little more is true: the definition of geodesic forces it to have constant speed. Indeed if x(z(t))
is a geodesic, then d

dt |x′|
2 = 2x′ · x′′ = 0, since x′′ is normal to the surface and x′ is tangent. It is just

common practice to parameterize geodesics by unit speed.

Example. On the sphere, geodesics are great circles (radius equal to that of the sphere). These mini-
mize length if we are less than half way round. The ‘long’ great circle between two points is a saddle
of the length function. Here’s how to calculate this naı̈vely: Suppose that x(z(t) is a geodesic. Since
x is a sphere, we may orient things so that that x = rU, where r is the radius of the sphere. The
geodesic condition then reads

x′′ = f x, (∗)

where f is some scalar function.7 Take dot products of (∗) with x′ to get 0 = x′′ · x′ = 1
2

d
dt |x′|

2. Hence
x(z(t)) has constant speed v. Now take dot products of (∗) with x to obtain

r2 f = x′′ · x =
d
dt

(x · x′)−
∣∣x′∣∣2 = −v2,

so that f is constant and indeed

x′′ = −v2

r2 x.

Finally, the vector k := x × x′ is constant (k′ = x × x′′ = 0), thus x lies in the intersection of the
constant plane k⊥ and the sphere: the definition of a great circle.

7 f x is multiplication of the value of f by x, evaluation which makes no sense.
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Contrary to what happens in E3, geodesics in surfaces do not necessarily minimize lengths be-
tween points, although they do locally. If a path is the shortest between two points, then it is neces-
sarily a geodesic, but the converse is not true. For example, consider two points on a sphere. We’ve
already seen that geodesics are great circles, but there are two ways to joint two points on a sphere
by an arc of a great circle: the shorter of the two will be the shortest path. The longer geodesic ‘going
the long way round’ is simply a stationary point of the length function and neither a maximum or a
minimum.

Geodesics and cartography. Since the shortest path between two points is a geodesic, it is along
these that planes tend to fly (if you discount wind effects, less distance = less fuel). If you think of the
standard projections of the Earth (say the commonly used Mercator projection — see 162A) and you
plot what happens to great circles, you see that they are not mapped to straight lines on the projection
(great circles being mapped to straight lines only happens for the rather strange-looking gnomonic
projection). This is why it looks like you’re taking a longer curving path when you take a long flight.
You are in fact taking the shortest path there is. Figure 7 shows a geodesic flight-path.8

Figure 7: The great circle from Irvine CA to Irvine Scotland

We now consider geodesics in terms of the structure equations.

Theorem 4.5. Let x : U → E3 be a surface for which a moving frame has been chosen.9 A unit speed curve
x(z(t)) lying in the surface is a geodesic iff it satisfies the following equations:

d
dt (θ1(z′)) + ω12(z′)θ2(z′) = 0
d
dt (θ2(z′))−ω12(z′)θ1(z′) = 0

Geodesic equations,

(θ1(z′))2 + (θ2(z′))2 = 1 Energy equation.

8Courtesy of the Great Circle Mapper http://gc.kls2.com/
9Thus fixing the 1-forms θ1, . . . , ω23.
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Proof. The energy equation is just the unit speed condition I(z′, z′) = 1. Now a curve having x′′

normal to the surface is equivalent to e1 · x′′ = 0 = e2 · x′′. Expanding the first as (ei · x′)′ − e′i · x′
yields

0 = e1 · x′′ = (e1 · x′)′ − e′1 · x′ = (e1 · dx(z′))′ − de1(z′) · dx(z′)

=
d
dt

(θ1(z′)) + ω12(z′)θ2(z′).

e2 · x′′ = 0 similarly expands to the second geodesic equation.

Any parameterized curve x(z(t)) satisfying just the geodesic equations (i.e. x′′ normal to the sur-
face) automatically has constant speed: observe that the geodesic equations force

d
dt

((θ1(z′))2 + (θ2(z′))2) = 0.

The energy equation simply normalizes this speed to be 1. In practice, ‘geodesic’ often simply refers
to a non-parameterized curve as a subset of the surface which, if parameterized by arc-length, satis-
fies our definition.

Proposition 4.6. Given a point p on a surface and a unit tangent vector v to the surface at that point, there
exists a unique geodesic through p in the direction v: equivalently x(z(0)) = p and x′(z(0)) = v.

Proof. This is a consequence of the usual theorem of existence of solutions to ODE’s: the geodesic
equations are a pair of second-order ODE’s.

Given two points on a ‘nice’ surface, there exists a geodesic joining those points. Nice in this
situation essentially means that you wouldn’t want the geodesic to leave or touch the edge of the
surface. Certainly any two points on a handlebody (a complete surface—closed with no edge and
no self-intersections) may be joined by a geodesic. However, you’ll need good luck to succeed in
computing many of these explicitly!

4.3 The surface of revolution

As an example, we consider a standard surface of revolution,

x(u, φ) =

 f (u) cos φ
f (u) sin φ

u

 .

We already know that θ1 =
√

1 + f 2
u du, θ2 = f dφ and ω12 = − fu√

1+ f 2
u

dφ. For all curves x(z(t))

we have,

z′ = u′
∂

∂u
+ φ′

∂

∂φ
.

Thus,

θ1(z′) =
√

1 + f 2
u u′, θ2(z′) = f φ′, ω12(z′) =

− fu√
1 + f 2

u
φ′.
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The geodesic equations and the energy equation thus become,
d
dt (
√

1 + f 2
u u′)− f fuφ′2√

1+ f 2
u

= 0,
d
dt ( f φ′) + fuu′φ′ = 0,
(1 + f 2

u)u′2 + f 2φ′2 = 1.

Observe that the lines φ = constant (lines of longditude) are geodesics: the second equation
is trivially satisfied while the 1st and the energy equation become the same first order ODE for u
which, by the usual theorem from ODE’s, has a solution.

The lines of latitude u = constant are geodesics if only if f fuφ′2 = 0 which is iff fu = 0 (the
remaining equations allow one to solve for φ). Thus lines of latitude are only geodesics at critical
values of the radius.

Notice that, since f ′ = fuu′, the second geodesic equation is equivalent to A = f 2φ′ = constant.
Substituting back into the energy equation we have,

(1 + f 2
u)u′2 +

A2

f 2 = 1.

Hence |A| ≤ f . This shows that a geodesic starting at a given point – which comes equipped with
a value for A — is confined to regions of the surface where f ≥ A. This means that geodesics can
‘bounce off narrow necks’ of surfaces of revolution.

It’s not advisable to try to solve these equations explicitly for many surfaces. Even for the cone
it is extremely messy The cone is one that we can manage. If you let f (u) = au, where a is constant
then it can be seen that

u(t) = ±

√
A2

a2 +
(t + B)2

1 + a2 , φ(t) =
√

1 + a2

a
tan−1

(
a

t + B
A
√

1 + a2

)
+ C,

where A, B, C are constants. Normalizing B = 0 = C and fixing u > 0, we see that f (u(0)) = |A|
and u increases as t moves in either direction, φ keeps increasing as t does, but never quite makes it
to angle

√
1+a2π

2a . If you take a shallow cone (a = 1 is the cone z2 = x2 + y2), then the geodesics have
no self intersections. However, once a < 1√

3
the geodesics will begin to meet round the far side of

the cone. Figure 8 illustrates a geodesic with a = 1
3 . Note that this is clearly not the shortest path

between the two points on the geodesic at the bottom of the picture: indeed as a decreases and the
cone becomes more sharp, the number of distinct geodesic paths between two points increases.

4.4 Riemannian geometry

Since the geodesic equations depend only on quantities derived from the first fundamental form
I, we can apply them to abstract first fundamental forms as we did in the section on Riemannian
geometry. Notice first that isometric surfaces x, y have the same geodesics in the sense that if x(z(t))
is a geodesic, then so is y(z(t)).

Geodesics are extremely important in Physics. For example light is always assumed to travel
along the shortest path between two points. If your ‘geometry’ is that of refraction between two
mediums for which the speed of light is different, you will obtain Snell’s law. If your geometry is
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Figure 8: Geodesic on a cone

some curved spacetime such as that of the Schwarzschild metric, then light is seen to curve. Indeed
the concept of motion along a geodesic is the relativistic replacement of Newton’s first law: instead
of a body moving at constant speed along a straight line if unaffected by external forces, a body
will move along a geodesic in spacetime. This can be difficult to visualize when you have curved
spacetime, because the notion of speed is different in spacetime and ‘normal’ space: indeed a curve
with zero acceleration in curved spacetime will, when translated into 3-dimensional space, not have
constant speed. In flat spacetime however, geodesics are straight lines, and these translate to straight
lines in our 3-dimensional reference frame. Indeed if a curve has zero acceleration in flat spacetime,

and constant speed −k2, then its speed in Euclidean space will be
√

c2 − k2/v2
t , where vt is the (nec-

essarily constant) t-component of the tangent vector to the curve in spacetime.

First we consider the upper half plane model of hyperbolic space. The geodesic and energy equa-
tions become, (

x′
y

)′
− x′y′

y2 = 0,(
y′
y

)′
+ x′2

y2 = 0,
x′2

y2 + y′2

y2 = 1.

Notice that the first geodesic equation is equivalent to A = x′
y2 = constant. Taking A = 0 gives us

x′ = 0⇒ y′
y = ±1⇒ y = Ce±t. Hence vertical straight lines are geodesics. Otherwise, first rearrange

the energy equation,

1 +
y′2

x′2
=

y2

x′2
=

1
A2y2 .

Now observe that dy
dx = y′

x′ , so that

1 +
(

dy
dx

)2

=
1

A2y2 =⇒
(

dy
dx

)2

=
1− A2y2

A2y2 .

Solving this we have ∫ ±Ay dy√
1− A2y2

=
∫

dx =⇒ ∓A−1
√

1− A2y2 = x− C,
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where C is a constant. Squaring and rearranging yields

(x− C)2 + y2 = A−2,

thus circles centered on the x-axis are the other geodesics (see Figure 9).

Figure 9: Geodesics leaving a point in the hyperbolic upper half plane

Geometry in this picture is a little strange. For example if we wanted to talk about a triangle, the
only sensible definition is that its edges be geodesics (since geodesic is what we mean by ‘straight’ in
this geometry). Figure 10 gives an example.

Figure 10: A geodesic triangle

Geodesics are infinitely long in hyperbolic space. Given two points, there exists a unique geodesic
joining them. The situation is like that of E2 except that Euclid’s “parallel postulate” does hold.
(Given a line (geodesic) and a point not on the line, there exist many geodesics through the point not
meeting the original line.) Euclid’s postulate was that there is only one such ‘parallel’ line. Hyper-
bolic space shows that the postulate cannot be proved from the other axioms of Euclidean geometry.

If you know a little complex analysis, specifically Möbius transforms, then it can be shown that
the geodesics for Poincaré’s disc model of hyperbolic space (given by the metric

I =
4

(1− r2)2 (r2 dr2 + r2 dθ2)

on the unit disc) are arcs of circles which intersect the edge of the disc at right angles. The Circle Limit
artworks by M.C. Escher illustrate this geometry very nicely (Figure 11 is Circle Limit IV). If you look
at a string of angels and demons connected head to toe you’ll see that they’re lined up along one of
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Figure 11: M.C. Escher’s Circle Limit IV

these geodesics. It’s hard to measure exactly, but it seems reasonable to suppose that with respect to
the hyperbolic metric, the individual figures all have the same length and area.

4.5 Covariant derivatives and geodesics

Geodesics are intimately related to the concept of covariant differentiation and parallel transport of
vector fields. At the heart of this is the idea that, in a vector space, we have an inherent notion
of transporting a vector along a curve (just slide it so that it points in the same direction). When
thinking about transporting vectors along a curve in a surface we are left with a problem: just sliding
a vector that is tangent to the surface along the curve so that it points ‘in the same direction’ will
almost certainly result in the transformed vector not being tangent to the surface any longer. What is
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the correct thing to do in this situation?

Definition 4.7. Suppose that γ(t) = x(z(t)) is a parameterized curve in a surface x : U → E3. A
vector field v along γ is a smooth assignment v(t) = dx(X(z(t))) of a vector tangent to the surface at
γ(t) (here X(z(t)) is a vector field X on U restricted to the parameterizing curve z(t)).

The assignment is smooth in the sense that the function t 7→ v(t) is infinitely differentiable.

Definition 4.8. Let v be a vector field along a curve γ in a surface. The covariant derivative of v is the
vector field D d

dt
v := πT dx′v = πT dz′ dx(X(z(t))) = πT d

dt v, where πT is orthogonal projection onto
the tangent space to the surface at each point.

We differentiate the vector field v with respect to the parameter t, and then project back onto the
tangent space.

Example. If γ(t) is a curve in a surface, then γ′(t) is a vector field along γ. The covariant derivative
of γ′ is then πTγ′′(t), often written Dγ′γ

′.

Definition 4.9. A vector field v along a curve γ is parallel if its covariant derivative is zero everywhere.

By appealing to the above example we see that we have proved the following:

Theorem 4.10. A curve γ in a surface is a geodesic iff the vector field γ′ is parallel along γ.

Let v(t) = dx(X(z(t)) be a vector field along a curve γ(t) = x(z(t)). If we choose an adaptive
frame e1, e2 for the surface, then there exist functions a(t), b(t) such that

v(t) = a(t)e1(z(t)) + b(t)e2(z(t)),

in which case the covariant derivative may be written

D d
dt

v = πT d
dt

v(t) = (a′(t) + b(t)ω12(z′(t)))e1(z(t)) + (b′(t) + a(t)ω21(z′(t)))e2(z(t)).

It follows that v is parallel along γ iff the coefficients a, b satisfy the differential equation(
a′

b′

)
=
(

0 −ω12(z′)
ω12(z′) 0

)(
a
b

)
. †

Note that ω12(z′(t)) is simply a function of t, and so we may define a function g(t) =
∫ t

t0
ω12(z′(t)) dt.

It is then easily checked that the solution to the above differential equation with initial condition
prescribes at t = t0 is (

a(t)
b(t)

)
=
(

cos g(t) − sin g(t)
sin g(t) cos g(t)

)(
a(t0)
b(t0)

)
. ‡

We have thus proved the following theorem.

Theorem 4.11. Given a smooth curve γ in a surface x, and an initial vector v0 tangent to the surface at γ(t0),
there exists a unique parallel vector field v along γ such that v(t0) = v0.

Definition 4.12. The vector field v is above termed the parallel transport of v0 along γ.
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The concept of parallel transport is exactly what sliding a vector along a curve means inside a
surface. Indeed it is clear that |v(t)|2 = a2 + b2 = a2

0 + b2
0 is constant so that the length of a parallel

transported vector is constant. Moreover, it can be seen (see homework) that the parallel transport of
a vector along a geodesic has constant angle with the tangent field to that geodesic.

Examples. 1. If we jump dimensions for a moment and think about the covariant derivative in
E3, then D is simply ‘differentiate then project onto the tangent space at each point’. But this
tangent space is exactly E3 itself, so the projection is the identity map, and D is just normal
differentiation. In this case, let γ be a curve in E3, and v0 a vector at γ(0). We may take our
moving frame to be the standard basis e1, e2, e3, the connection 1-forms ωij (1 ≤ i, j ≤ 3) of
which are all zero. Comparing with the differential equation (†), we see that the coefficients of
the parallel transport v of v0 with respect to the standard basis are all constant. Thus v = v0
and parallel transport really just moves the vector v0 keeping it parallel and of the same length.

2. Now let x : U → E3 be the unit sphere x(θ, φ) =

sin θ cos φ
sin θ sin φ

cos θ

 and consider the parallel trans-

port of the vector v0 =

 0
1/4
1/2

 at the point γ(0) along the curve γ(t) =

sin(t + π/2) cos t
sin(t + π/2) sin t

cos(t + π/2)

 =cos t cos t
cos t sin t
− sin t

. In terms of the moving frame on page 12 we have dx = e1 dθ + sin θe2 dφ so that

θ1 = dθ, θ2 = sin θ dφ and ω12 = − cos θ dφ. Now z(t) = (θ(t), φ(t)) = (t + π/2, t), so that
z′(t) = ∂

∂θ + ∂
∂φ . Thus ω12(z′) = − cos(t + π/2) = sin t. Hence g(t) =

∫ t
0 ω12(z′) dt = 1− cos t.

Noting that a(0) = − 1
2 and b(0) = 1/4, we apply equation (‡) to see that the coefficients of the

parallel transport of v0 along γ(t) are

a(t) = −1
2

cos(1− cos t) +
1
4

sin(1− cos t), b(t) = −1
2

sin(1− cos t)− 1
4

cos(1− cos t),

so that the parallel transport of v0 along γ is

v(t) = a(t)

− sin t cos t
− sin t sin t
− cos t

+ b(t)

− sin t
cos t

0

 .

Notice that the length of v is constant. Figure 12 shows the curve and the transported vector
field for −π/2 < t < π/2.

It is not hard to show (see homework) that by parallel transporting around closed curves on
general curved surfaces, you can transform a tangent vector to any other. Figure 13 shows the par-
allel transport of the red tangent vector (− 1

2 , 0, 0)T at the north pole down to the equator, round
the equator by an angle φ0, and back to the north pole. (− 1

2 , 0, 0)T has become the blue vector
(− 1

2 cos φ0,− 1
2 sin φ0, 0)T.
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Figure 12: A parallel transported vector field

Figure 13: Transporting a vector field around a closed curve

4.6 Covariant derivatives more generally

The concept of covariant derivative is much more general than that along a curve. One may take
any vector field on a surface, differentiate it and project back onto the tangent space at each point.
However, when you taking the covariant derivative of a general vector field, the result is only a
vector field once you specify a direction in which to differentiate. Thus:

Definition 4.13. Let x ⊂ E3 be a parameterized surface and suppose that v = dx(Y) is a vector field
on S (i.e. Y is a vector field on U). Let X be a vector field on U. The covariant derivative of v with
respect to X is the vector field DXv, which may be written alternately

DXv = DX dx(Y) := πT dXv = πT dv(X) = πT dX dYx = πT(X[Y[x]]).

As before, we differentiate and then project onto the tangent plane at each point.

In keeping with our program of moving all calculations to the parameterization space, we can
define the covariant derivative of a vector field Y on U by X to be ∇XY, where

dx(∇XY) = DX dx(Y).

The operator D is often referred to as the Levi-Civita connection (or just the connection) of the surface
x, and ∇ as the Levi–Civita connection of the induced metric I = dx · dx on U. The full curvature
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tensor can be written in terms of ∇: for any vector fields X, Y, Z on U, we have that10

R(X, Y)Z := (∇X∇Y −∇Y∇X −∇[X,Y])Z = K(I(X, Z)Y− I(Y, Z)X),

where K is the Gauss curvature.

Why connection? The covariant derivative tells you how to parallel transport tangent vectors along
curves. If we imagine two nearby points p, q on a surface S joined by a geodesic, then the covariant
derivative defines an invertible linear map TpS → TqS where a tangent vector at p is parallel trans-
ported to a tangent vector at q. This connects the two tangent spaces. Indeed a smooth choice of
connection is equivalent to a choice of covariant derivative. The Levi–Civita is just one of many
connections, albeit one with very nice properties.

One of the best ways of thinking about D is that it is the natural restriction of the operator d to the
tangent space at each point. Indeed, if we think about the equivalent of the moving frame equation
dE = Eω (a 3× 3 matrix equation), we can write

D(e1, e2) = (e1, e2)
(

0 ω12
−ω12 0

)
.

For this reason it is common for to think of ‘splitting up’ d into pieces:

ω =

 0 ω12 ω13
−ω12 0 ω23

−ω13 −ω23 0

 =
(

[D] −[II]T

[II] 0

)
,

where [D], [II] can be thought of as the matrices of the connection D and the second fundamental form
II. If you differentiate a vector field, D tells you how much points in a tangent direction, and II how
much in a normal direction. This idea can be used to describe differentiating any (even non-tangent)
vector field. In higher dimensions, when you have a k-dimensional surface in En, the matrix [II] of the
second fundamental form is k× (n− k), and the 0 in the lower right of ω becomes a (n− k)× (n− k)
skew-symmetric matrix of 1-forms which describes how to differentiate normal vector fields.

Definition 4.14. A vector field v = dx(Y) is parallel iff DXv = 0 for all vector fields X on U.

The existence of parallel vector fields is of great importance in applications. In higher dimensions
the notion of a parallel tangent frame is very common: for example in the case of a surface in E3, we
would want e1, e2 to be parallel vector fields. The generalization of the following theorem to higher
dimensions is extremely useful.

Proposition 4.15. There exists a parallel tangent frame iff K = 0.

Proof. Suppose that e1, e2 are parallel, then De1 = πT de1 = e2ω21 = 0, hence ω12 vanishes and thus
so does K.
Conversely, let K = 0. Then dω12 = 0 and so, at least locally, ω12 = d f for some function f . Now
consider the new tangent frame

(ê1, ê2) = (e1, e2)
(

cos f − sin f
sin f cos f

)
.

Then Dê1 = (− sin f d f + sin f ω12)e1 +(cos f d f − cos f ω12)e2 = 0, hence ê1 is parallel. ê2 is parallel
similarly, and we have a parallel frame.

10Here [X, Y] := X ◦Y−Y ◦ X is a vector field on U known as the Lie bracket of X, Y (see homework).
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4.7 Geodesic curvature

We can think of the curvature of a curve in E2 as measuring how much the curve deviates from a
straight line. Since a geodesic replaces the concept of straight line on a surface, we can look for a
measure of how much a general curve deviates from a geodesic.

Definition 4.16. Let γ(t) be a unit speed curve contained in an oriented surface. Then γ′(t) is a unit
length vector field along γ. Indeed the covariant derivative of γ′ must be orthogonal both to γ′, and
to the unit normal U of the surface. Hence

D d
dt

γ′ = κgU× γ′

for some function κg called the geodesic curvature of γ.

Note that the sign of κg depends on the orientation of the surface (changing orientation switches
the sign of U). It is clear that γ is a geodesic ⇐⇒ κg is identically zero.

The above can be reformulated using cross products so that we never see the covariant derivative.
Indeed for any curve (unit-speed or otherwise), the formula becomes

κg =
(γ′ × γ′′) ·U
|γ′|3

.

This is reminiscent of the formula for curvature of a spacecurve (see homework for a proof).
The geodesic curvature of γ should be viewed as the curvature of the curve detectible to a dweller

of the surface who knows nothing of Euclidean space and normal directions. Indeed it is the curva-
ture of the curve that forms the best planar approximation to γ at each point, as the following theorem
shows.

Theorem 4.17. Let γ(t) be a unit speed curve in a surface x and let U = U(0) and T = T(0) = γ′(0) be the
unit normal and tangent vectors to γ(t) at t = 0.

1. The geodesic curvature κg(0) of γ at zero is the plane curvature at t = 0 of the projection of γ onto
the tangent plane to x at γ(0). I.e. of the curve γ̂(t) = πT

0 γ(t) = γ(t) − (γ(t), U)U. Moreover∣∣κg
∣∣ =

∣∣πTγ′′
∣∣.

2. The normal curvature κn(0) of γ(t) at zero is the plane curvature at t = 0 of the projection of γ(t) onto
the space Span(T, U). I.e. of the curve γ̃(t) = (γ(t), T)T + (γ(t), U)U. Moreover κn = (γ′′, U).

3. κ2 = κ2
g + κ2

n.

Proof. 1. γ̂(t) = γ(t)− (γ(t), U)U, where ( , ) is the scalar product. Thus γ̂′ = γ′ − (γ′, U)U and
γ̂′′ = γ′′ − (γ′′, U)U. Evaluating at t = 0 yields

γ̂′(0) = γ′(0) = T, γ̂′′(0) = γ′′(0)− (γ′′(0), U)U.

If we take the orientation of the tangent plane at t = 0 given by the unit normal, we have that
JT = U× T , where J is ‘rotate 90 degrees’ (i.e. T, U× T, U form an oriented basis). The plane
curvature of the curve γ̂ at t = 0 is thus

κ̂(0) = γ̂′′(0) · JT = (γ′′(0)− (γ′′(0), U)U) · (U×T) = γ′′(0) · (U×T) = (T×γ′′(0)) ·U = κg(0).

Moreover, since γ̂ is unit speed at t = 0, we see that
∣∣κg(0)

∣∣ = |γ̂′′| =
∣∣πTγ′′(0)

∣∣.
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2. It is clear that γ̃′(0) = T and γ̃′′(0) = (γ′′(0), γ′(0))U + (γ′′(0), U)U = (γ′′(0), U)U. Taking U
to be the unit normal N for the curve γ̃ at t = 0, we clearly have γ̃′′(0) = (γ′′(0), U)N, so that
κ̃(0) = (γ′′(0), U).

Now suppose that γ′ = cos φe1 + sin φe2, where e1, e2 are principal curvature directions on x.
Thus

κ̃(0) = (γ′′(0), U) = − cos φω13(0)− sin φω23(0).

However, e1, e2 are curvature directions, thus ω13(0) = −k1 cos φ, and ω23(0) = −k2 sin φ, so
that

κ̃(0) = k1 cos2 φ + k2 sin2 φ = κn(0),

is the normal curvature11 of γ at t = 0.

3. At each point, γ′′ = πTγ′′+ (γ′′, U)U = κgU×γ′+ κnU is an orthogonal decomposition, hence
Pythagoras’ =⇒ κ2 = κ2

g + κ2
n.

Examples. 1. On the surface of a sphere of radius r it can be seen that curves of constant geodesic
curvature are all circles: κg = 0 are great circles,

∣∣κg
∣∣ = a are circles of geodesic radius

r tan−1(r−1a−1) (see the homework).

2. Consider the curve γ on the surface of the cylinder given by wrapping round a sine wave

γ(t) =

cos t
sin t
sin t

 .

We calculate all the curvatures.

γ′(t) =

− sin t
cos t
cos t

 , γ′′(t) = −γ(t), γ′ × γ′′ =

 0
−1
−1

 .

Since U = (cos t, sin t, 0)T is the usual outward pointing normal of the cylinder, we have

κg =
(γ′ × γ′′) ·U
|γ′|3

=
− sin t

(1 + cos2 t)3/2 , κ =
|γ′ × γ′′|
|γ′|3

=
√

2
(1 + cos2 t)3/2 .

It follows that the normal curvature is given by

κ2
n = κ2 − κ2

g =
2− sin2 t

(1 + cos2 t)3 =
1

(1 + cos2 t)2 .

Since the surface is curving away from the unit normal (the non-zero principal curvature is−1)
we must have κn ≤ 0, and so

κn =
−1

1 + cos2 t
.

11We use Euler’s formula from 162A

38



We can check this in an alternative way using Euler’s formula. The angle θ between γ′ and the
vertical is given by

cos θ =
γ′

|γ′| ·

0
0
1

 =
cos t√

1 + cos2 t
.

Since k1 = 0 and k2 = −1, we have κn = − sin2 θ = −(1− cos2 θ) = −(1 + cos2 t)−1, as above.

5 Integration

We wish to develop integration in Rn rather than En so that the theory will be independent of Eu-
clidean structure. Rather than integrate functions over open sets in Rn, we integrate n-forms. The
advantage is that our story becomes co-ordinate independent: when changing variables, n-forms
transform through scaling by the Jacobian of the transformation.

5.1 Orientation

Definition 5.1. An orientation of Rn is a choice of which n-forms are ‘positive’. If x1, . . . , xn are the
standard co-ordinate functions on Rn, then the standard orientation is given by taking asserting that
all positive multiples of

dx1 ∧ · · · ∧ dxn,

are positive. Co-ordinates y1, . . . , yn are said to be oriented if dy1 ∧ · · · ∧ dyn is positive.

From now on we will forget in the abstract that x1, . . . , xn are the standard co-ordinate functions,
and just assume that these are oriented co-ordinates on some open set U.

Now let ω be an n-form defined on U ⊂ Rn. Let x1, . . . , xn be oriented co-ordinates on U. Then,
since the set of n-forms on Rn has dimension 1 at each point, there exists a smooth function f : U → R

such that
ω = f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn.

Definition 5.2. The integral of ω over U is defined as∫
U

ω =
∫

U
f (x1, . . . , xn) dx1 · · · dxn,

provided the integral on the right hand side exists.

Proposition 5.3. Let x1, . . . , xn be oriented co-ordinates on U ⊂ Rn. Let y1, . . . , yn : U → R be differentiable
functions. Then

dy1 ∧ · · · ∧ dyn = det
(

∂yi

∂xj

)
dx1 ∧ · · · ∧ dxn.

The determinant is the usual Jacobian matrix:12 i.e. the determinant of the matrix whose ij-th entry is ∂yi
∂xj

. It
follows that the integral of an n-form is independent of the choice of oriented co-ordinates which we integrate
with respect to.

12This matrix is often written ∂(y1,...,yn)
∂(x1,...,xn) in books.
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Proof. Recall that dyi

(
∂

∂xj

)
= ∂yi

∂xj
. Since any two n-forms differ only by a multiple, and are multi-

linear maps, we need only evaluate on a family on n linearly independent vectors. Using the formula
on page 4 we see that

dy1 ∧ · · · ∧ dyn

(
∂

∂x1
, . . . ,

∂

∂xn

)
= det

(
∂yi

∂xj

)
.

However, this is clearly the same result as obtained by evaluating the right hand side of the formula
in the proposition on the same n-vectors.

Suppose that ω = g(y1, . . . , yn) dy1 ∧ · · · ∧dyn, and that f (x1, . . . , xn) = g(y1, . . . , yn). If y1, . . . , yn
are oriented co-ordinates, then the determinant above is positive. From multi-variable calculus, we
know that ∫

U
g(y1, . . . , yn) dy1 · · · dyn =

∫
U

f (x1, . . . , xn)
∣∣∣∣det

(
∂yi

∂xj

)∣∣∣∣ dx1 · · · dxn.

The left hand side is the integral of ω evaluated using the co-ordinates yi, while the right hand
side (since the determinant is positive without having to take absolute values) is the same integral
evaluated using the co-ordinates xi. The integral

∫
U ω is thus independent of choice of oriented

co-ordinates.

It is an obvious follow-on from the proof that if you change the orientation of the co-ordinates,
the sign of

∫
U ω changes. The Proposition says that change of variables is built into this definition of

an integral. We simply have to be careful to change variables only to other oriented co-ordinates.

Examples. 1. Let ω = dx ∧ dy, U = unit disk. Then∫
U

ω =
∫

U
1 dx dy = π.

In polar co-ordinates, dx ∧ dy = r dr ∧ dθ and so∫
U

ω =
∫ 2π

0

∫ 1

0
r dr dφ = π.

2. Let ω = e−(x+y+z) dx ∧ dy ∧ dz, and U is the positive octant {(x, y, z) : x > 0, y > 0, z > 0}.
Then ∫

U
ω =

∫ ∞

0

∫ ∞

0

∫ ∞

0
e−(x+y+z) dx dy dz = 1.

5.2 Integration over surfaces

We now know how to integrate 3-forms over open sets U ⊂ R3 and 1-forms over (segments of)
curves in R3. We now want to integrate 2-forms over surfaces in R3. We will see that a Euclidean
structure is not necessary in order to integrate.

Definition 5.4. Let f : U → R3 and g : R3 → R be smooth functions. Then dg is a 1-form on R3.
The pull-back of dg by f is the 1-form on U defined by

f ∗ dg := d(g ◦ f ).
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Now let α = ∑i<j aij dxi ∧ dxj be a general 2-form on R3. The pull-back of α by f is the 2-form

f ∗α = ∑
i<j

(aij ◦ f )( f ∗ dxi) ∧( f ∗ dxj) = ∑
i<j

(aij ◦ f ) d(xi ◦ f ) ∧ d(xj ◦ f ).

There is a little more exterior calculus going on here. We have, as is common, brushed something
about the exterior derivative under the carpet. We’ve said that if g : U → Rm is a function, then, for
each p ∈ U, dg|p : TpU → Rm is a linear map. It is more correct to say that dg|p : TpU → Tg(p)R

n.
I.e. dg|p maps tangent vectors to U at p to tangent vectors to Rm at g(p). The map g sends points
in U to points in Rm, thus dg|p sends vectors based at p to vectors based at g(p). When n = 1, it is
standard practice to write TpR = R and treat dg(v) as a number, rather than a ‘tangent vector to R’.

Consider the following labelling of bases and attendant co-ordinate systems required to describe
a compound map f ◦ g. For example, we choose a basis E1, . . . , Em of Rm and co-ordinates y1, . . . , ym :
Rm → R with respect to this basis (e.g. y3(2E1 + 3E3 − 5E4) = 3). The identification Rm ∼= TpRm is
then Ej 7→ ∂

∂yj
.

Functions U ⊂ Rl
g // Rm

f // Rn

Differentials TpU
dg // Tg(p)R

m d f // Tf (g(p))R
n

Basis vectors Ej Êk

Co-ordinate functions xi yj zk

1-forms dxi dyj dzk

Tangent vectors ∂
∂xi

∂
∂yj

∂
∂zk

In what follows, the tensor product notation dxi ⊗ ∂
∂yj

denotes the rank one linear map TpU →
Tg(p)R

m which sends ∂
∂xi

to ∂
∂yj

and all other basis tangent vectors to zero.

With respect to the bases {Ej} and {Êk}, there exist functions fk : Rm → R and gj : U → R such
that

f =
n

∑
k=1

fkÊk, g =
m

∑
j=1

gjEj.

But then

d f =
m

∑
j=1

n

∑
k=1

∂ fk

∂yj
dyj ⊗

∂

∂zk
, dg =

l

∑
i=1

m

∑
j=1

∂gj

∂xi
dxi ⊗

∂

∂yj
.

With respect to the bases ∂
∂xi

, ∂
∂yj

, ∂
∂zk

, the matrices of the above linear maps are simply their Jacobians.
It follows by the chain rule that

d f ◦ dg =
l

∑
i=1

m

∑
j=1

n

∑
k=1

∂ fk

∂yj

∂gj

∂xi

(
dyj ⊗

∂

∂zk

)
◦
(

dxi ⊗
∂

∂yj

)

=
l

∑
i=1

n

∑
k=1

∂( fk ◦ g)
∂xi

dxi ⊗
∂

∂zk
= d( f ◦ g).

Applying this reasoning to the notion of a pull-back, we see that f ∗ dxi = d(xi ◦ f ) may be writ-
ten dxi ◦ d f . Indeed, if α is any form, we may compactly write f ∗α = α ◦ d f .
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Definition 5.5. Let f : U → R3 be an oriented local surface and let α be a 2-form on R3. The integral
of α over Σ := f (U) is given by ∫

Σ
α =

∫
U

f ∗α.

The orientation of Σ induces an orientation on U in the following way. Suppose that u, v are
co-ordinates on U. The unit normal vector U to Σ is a positive multiple of either fu × fv or fv × fu.
If the former, then we say that u, v are oriented co-ordinates on U and take du ∧ dv to be positive.
Changing the orientation of Σ changes the orientation on U.

Examples. 1. Let α = x3 dx1 ∧ dx2 − x1 dx2 ∧ dx3 and

f (u, v) =

uv
u2

v

 ,

defined on U = (0, 1)× (0, 1) with orientation13 U = 1
| fu× fv| fu × fv. Then

x1 ◦ f = uv, x2 ◦ f = u2, x3 ◦ f = v,
f ∗ dx1 = v du + u dv, f ∗ dx2 = 2u du, f ∗ dx3 = dv,

f ∗( dx1 ∧ dx2) = −2u2 du ∧ dv, f ∗( dx2 ∧ dx3) = 2u du ∧ dv,

f ∗α = −4u2v du ∧ dv.

Thus ∫
f

α =
∫

U
f ∗α =

∫ 1

0

∫ 1

0
−4u2v du dv = −2

3
.

2. Let α = x1x3 dx2 ∧ dx3 be a 2-form of R3, U = (0, 1)× (0, 2π), and

f (u, φ) =

u cos φ
u sin φ

u


be the cone, with orientation U = 1

| fu× fv| fu × fv. The composition x1 ◦ f here is just u cos φ.
Thus

f ∗α = u2 cos φ d(u sin φ) ∧ du = u3 cos2 φ dφ ∧ du,

and so ∫
f

α =
∫

U
u3 cos2 φ dφ ∧ du = −

∫ 2π

0

∫ 1

0
u3 cos2 φ du dφ = −π

4
.

5.3 Stokes’ theorem

Definition 5.6. For the purposes of what follows, a k-dimensional submanifold Σ of R3 with bound-
ary ∂Σ is;14

k = 1 An oriented curve with boundary the two ends and no self-intersections.

13I.e. we take the orientation such that du ∧ dv is positive.
14We are being very loose with terminology here: a submanifold is a much more precisely defined object.

42



k = 2 An oriented surface bounded by a single curve ∂Σ.

k = 3 A domain (subset with no holes) Σ ⊂ R3 oriented as usual and bounded by a surface ∂Σ.

We can even put an orientation on a 0-dimensional manifold, a point, simply by attaching a choice
of ±1.

Definition 5.7. 1. Let Σ be an oriented curve in R3. The induced orientation on ∂Σ (the two end-
points of the curve) is to attach a -1 to starting end of the curve, and a +1 to the terminal end.
Alternatively, let u1 be an oriented co-ordinate on the curve: if ∂

∂u1
points from the curve to-

wards the endpoint, then that endpoint is positively oriented.

2. Let Σ be an oriented surface in R3 with boundary an oriented curve ∂Σ. The induced orientation
on ∂Σ is such that if u1, u2 are oriented co-ordinates on Σ with u1 ≤ 0 and u1 = 0 on the
boundary then u2 is an oriented co-ordinate for ∂Σ.

3. Now let Σ be an oriented domain in R3, with boundary ∂Σ. The induced orientation on ∂Σ is
such that if u1, u2, u3 are oriented co-ordinates on Σ, with u1 ≤ 0 and u1 = 0 on the boundary,
then u2, u3 are oriented co-ordinates for ∂Σ.

While this definition seems complicated, it really exists just so that we could deal with induced
orientations in a dimension-independent way. What is really going on is this: on a surface Σ with
co-ordinates as described in part 1, then, at the boundary curve ∂Σ, the tangent vector ∂

∂u1
is pointing

out of the surface orthogonally to the boundary. Thus if u1, u2 are oriented co-ordinates on Σ, then
∂

∂u2
must point along the curve in such a way that

{
∂

∂u1
, ∂

∂u2
, U
}

is an adapted frame for Σ. I.e. the
induced orientation is found using the right hand rule: when you walk round the boundary with
your head pointing in the direction of the unit normal, then the surface is on your left. Figure 14
shows the induced orientation on ∂Σ when Σ is first a curve, then a surface.

U

∂

∂u1

∂

∂u2

Σ

∂Σ

+1−1

Figure 14: Induced orientations on boundaries

The induced orientation on a domain Σ with bounding surface ∂Σ is for the normal to be outward
pointing: indeed this normal is ∂

∂u1
according to the definition.

Theorem 5.8 (Stokes). Let Σ be a k-dimensional submanifold of Rn with boundary ∂Σ, given the induced
orientation. Let α be a (k− 1)-form defined on a neighborhood of Σ in Rn. Then,∫

Σ
dα =

∫
∂Σ

α.
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Proof for a square in R2. Let x1, x2 be co-ordinates on Σ scaled such that the boundary of Σ is the set

∂Σ = {(x1, 0), (x1, 1) : 0 ≤ x1 ≤ 1} ∪ {(0, x2), (1, x2) : 0 ≤ x2 ≤ 1}.

Let α = f (x1, x2) dx1 + g(x1, x2) dx2 be a general 1-form on Σ. Taking dx1 ∧ dx2 as positive on Σ, the
induced orientation on ∂Σ is then counter-clockwise. We thus have∫

∂Σ
α =

∫ 1

0
( f (x1, 0)− f (x1, 1)) dx1 +

∫ 1

0
(g(1, x2)− g(0, x2)) dx2.

However ∫
Σ

dα =
∫

Σ
(gx1 − fx2) dx1 ∧ dx2 =

∫ 1

0

∫ 1

0
(gx1 − fx2) dx1 dx2

=
∫ 1

0

∫ 1

0
gx1 dx1 dx2 −

∫ 1

0

∫ 1

0
fx2 dx2 dx1

=
∫ 1

0
(g(1, x2)− g(0, x2)) dx2 −

∫ 1

0
( f (x1, 1)− f (x1, 0)) dx1

=
∫

∂Σ
α.

Example. Let Σ be the triangular region {((x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}. Let α =
7x dx − 6xy dy. If we take the orientation such that dx ∧ dy is positive, then the induced orienta-
tion is to traverse ∂Σ counter-clockwise. Now

∫
∂Σ α is calculated by restricting α along each edge of

the triangle. On the first (horizontal) edge α = 7x dx, on the second (vertical) edge α = −6y dy, while
on the third we have x = y and so α = (7x− 6x2) dx. Hence∫

∂Σ
α =

∫ 1

0
7x dx +

∫ 1

0
−6y dy +

∫ 0

1
(7x− 6x2) dx =

7
2
− 3− 7

2
+ 2 = −1.

Now dα = −6y dx ∧ dy, so that∫
Σ

dα =
∫ 1

0

∫ x

0
−6y dy dx =

∫ 1

0
−3x2 dx = −1.

The full proof of Stokes’ theorem for a general region is beyond this course,15 so we’ll content
ourselves with observing that in E3 it reduces to one of three fundamental theorems.

k = 1 The fundamental theorem of calculus:
∫

C d f = f (b)− f (a). Integration of a 0-form (function)
over a point is equivalent to evaluation, the ± signs on the right hand side coming from the
induced orientation on the endpoints of the curve.

k = 2 Here α is a 1-form. Using our identification of 1-forms and 2-forms with vectors as in Section
1.1 we recover what is often referred to as Stokes’ theorem in vector calculus classes:∫

S
∇×A · dS =

∮
C

A · dr.

15Proving for cubic submanifolds is a straightforward generalization of the above argument, but for general submani-
folds we need the concept of partitions of unity in order to patch together integrals on overlapping cubic regions.
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The surface integral of the curl of a vector field is identified with the path integral of said vector
field over the boundary curve.

Recall our identification of 1-forms with Euclidean vector fields:

α = α1 dx1 + α2 dx2 + α3 dx3 ! A = α1e1 + α2e2 + α3e3.

Thus if C is a curve parameterized by γ(t) on a curve I, then∫
C

α =
∫

I
γ∗α =

∫
I

α(γ′(t)) dt.

Similarly identifying

γ′(t) = γ1
∂

∂x1
+ γ2

∂

∂x2
+ γ3

∂

∂x3
! dr := γ1e1 + γ2e2 + γ3e3,

we see that ∮
C

α =
∫

I

3

∑
i=1

αi(γ(t))γi(t) dt =
∮

C
A · dr.

Thus
∮

C α is the line integral of the vector field A round the curve. Now recall that dα! ∇×A
(the curl of A). Suppose that S is parameterized by f : U → E3. Then f ∗ dα = dα ◦ d f . We
have

dα = β1 dx2 ∧ dx3 + β2 dx3 ∧ dx1 + β3 dx1 ∧ dx2 ! ∇×A = β1e1 + β2e2 + β3e3.

We thus have to identify the pull-back f ∗ dα. For this, note that d(x1 ◦ f ) is simply the e1-
component of the differential d f . The pull-backs can thus be seen to be f ∗ dxi = d f · ei for
each i = 1, 2, 3. From this we have that f ∗ dx1 ∧ dx2 is the e3-component of the cross product of
fu × fv du ∧ dv (and similarly). It follows that

f ∗ dα =

β1
β2
β3

 · ( fu × fv) du ∧ dv = (∇×A) · ( fu × fv) du ∧ dv.

Hence
∫

S dα =
∫

(∇×A) · ( fu × fv) du dv =
∫

(∇×A) · dS, where dS is the ‘surface element’
of S.

k = 3 In a similar way as for k = 2 we get the divergence theorem∫
V
∇ ·A dV =

∫
S

A · dS.

Corollary 5.9 (Green’s theorem in the plane). Let U be a domain in the plane with boundary curve C. The
induced orientation on C is counter-clockwise due to the standard orientation on U. Stokes’ theorem for the
1-form α = P(x, y) dx + Q(x, y) dy is,∮

C
(P dx + Q dy) =

∫
U

(
∂Q
∂x
− ∂P

∂y

)
dx ∧ dy.

Stokes’ theorem in fact holds for more general objects than our definition of submanifold. For
example a segment of a cylinder has two boundary circles, so that ∂Σ consists of 2 curves.
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6 Applications in Euclidean space

6.1 Integrating functions

From multi-variable calculus, we have that the integral of a function f : E3 → R over a local surface
x : U → E3 is given by, ∫

surface
f =

∫
U

f (x(u, v))|xu × xv|du dv.

The |xu × xv|du dv factor is the area of an infinitessimal parallelogram on the surface. Taking f = 1
gives us the area of a piece of a local surface.
In Euclidean space we can integrate a function over a surface (rather than 2-forms over surfaces in R3).
This is because the notion of distance in Euclidean space means that we also have a notion of area.

Proposition 6.1. Suppose we have a local surface in E3 referred to an adapted frame, and let u, v be oriented
co-ordinates. Then

θ1 ∧ θ2 = |xu × xv|du ∧ dv.

Proof. Consider dx
∧
× dx (a vector of 2-forms where we simultaneously take wedge products of 1-

forms and cross products of vectors). On the one hand,

dx
∧
× dx = (xu du + xv dv)

∧
× (xu du + xv dv) = 2(xu × xv) du ∧ dv

= 2|xu × xv|e3 du ∧ dv.

Here we use the fact that u, v are oriented, so that xu × xv is a positive multiple of the unit normal e3.
However, on the other hand,

dx
∧
× dx = (θ1e1 + θ2e1)

∧
× (θ1e1 + θ2e1) = 2e3θ1 ∧ θ2,

giving the result.

The Proposition shows that the integral of a function over a surface is given by,∫
U

f (x(u, v))θ1 ∧ θ2.

In particular, if f ≡ 1, we have the area of the surface. For this reason, the 2-form θ1 ∧ θ2 is often
called the area form for the surface x.

Examples. 1. The sphere of radius a has θ1 = a dθ, θ2 = a sin θ dφ. If z is the standard vertical
co-ordinate on E3, we have,

(a)
∫

S
z =

∫
U

z(x(θ, φ))θ1 ∧ θ2 =
∫∫

U
a cos θa2 sin θ dθ dφ = 0.

(b) Surface Area =
∫

S
1 =

∫∫
U

a2 sin2 α dα dφ = 4πa2.

2. In hyperbolic space the area form is ( dx)2+( dy)2

y2 . To find the area of the infinite region U (shown

in Figure 15) bounded by the geodesics x = ±1, x2 + y2 = 1 we evaluate,∫
U

θ1 ∧ θ2 =
∫ 1

−1

∫ ∞
√

1−x2

1
y2 dx dy =

∫ 1

−1

1√
1− x2

dx = π.

Conversely, the hyperbolic area between the geodesic x2 + y2 = 1 and the x-axis is infinite.
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1−1 0 x

Figure 15: A region of hyperbolic space with area π

The same notation may be used to integrate functions over curves in Euclidean space. If we
write

∫
γ f , we mean

∫ s1
s0

f (γ(s)) ds, where γ(s0), γ(s1) are the endpoints of γ, and |γ′(s)| = 1 (γ is
parameterized by arc-length). Why do we need the Euclidean structure for this? Because without it
we have no notion of length by which to parameterize and so we are forced to integrate only 1-forms.

6.2 Minimal surfaces

Now that we know how to integrate functions on surfaces and calculate surface area, we can ap-
proach the problem of finding minimal surfaces: i.e. those whose area is minimal for all surfaces
with a given boundary. The argument is similar to the stationary distance approach to geodesics.

Let x : U → E3 be a surface, and consider the family of surfaces

xε(u, v) = x(u, v) + ε f (u, v)U(u, v),

nearby x. Here f is a smooth function on U of compact support.16 The idea is that we start with x and
perturb it by a small amount in the normal direction at each point in such a way that the boundary
is unchanged.

Definition 6.2. A local surface has stationary area if for all such families,

d
dε

∣∣∣∣
ε=0

Area(xε) = 0.

Theorem 6.3. A surface has stationary area iff its mean curvature vanishes.

Proof. Take the exterior derivative of xε.

dxε = dx + ε( d f U + f dU).

Just like in the geodesic arguments, we throw away all terms of order ε2 and higher. We first calculate
the first fundamental forms of the surfaces xε.

Iε ' dx · dx + 2ε f dU · dx = I− 2ε f II

' θ2
1 + θ2

2 + 2ε f (ω13θ1 + ω23θ2)

16The only important point is that if f extends to the curve parameterizing the boundary of x, then f would be zero
there.
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' (θ1 + ε f ω13)2 + (θ2 + ε f ω23)2.

We can therefore diagonalize Iε up to first order in ε be choosing θ1,ε ' θ1 + ε f ω13 and θ2
2,ε ' θ2 +

ε f ω23. Hence,

θ1,ε ∧ θ2,ε ' θ1 ∧ θ2 + ε f (ω13 ∧ θ2 + θ1∧23)
' θ1 ∧ θ2 + ε f ((aθ1 + bθ2) ∧ θ2 + θ1 ∧ (bθ1 + cθ2))
' θ1 ∧ θ2(1 + ε f (a + c)) = (1− 2ε f H)θ1 ∧ θ2,

where we’ve written ω13 = aθ1 + bθ2 and ω23 = bθ1 + cθ2. It follows that

d
dε

∣∣∣∣
ε=0

Area(xε) = −2
∫

U
f Hθ1 ∧ θ2,

which vanishes for all functions f iff H ≡ 0.

Thus minimal surfaces as defined in 162A are critical surfaces of the area functional. It certainly
follows that any surface which has minimal area for a given perimeter must have mean curvature
zero, although it is perfectly possible to have H = 0 for a surface which is not area minimizing.

6.3 Relations with Complex analysis

Let R2 = C the complex plane with complex co-ordinate z = x + iy and z = x− iy. We can consider
complex functions and complex differential forms. Exterior derivatives of real and imaginary parts
can be taken. In particular we can define

dz = d(x + iy) = dx + i dy, dz = dx− i dy.

dz and dz can be used as a basis for complex 1-forms instead of dx, dy. Defining two complex vector
fields,

∂ :=
∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
, ∂ =

∂

∂z
=

1
2

(
∂

∂x
+ i

∂

∂y

)
,

it is easy to see that any complex function satisfies,

d f = ∂ f dz + ∂ f dz.

Proposition 6.4. f is holomorphic iff ∂ f .

Proof. Let f = u + iv be the decomposition of f into real and imaginary parts. Then

∂ f =
1
2

(
∂

∂x
(u + iv) + i

∂

∂y
(u + iv)

)
=

1
2
(ux − vy + i(vx + uy)).

Thus ∂ f = 0 ⇐⇒ f satisfies the Cauchy–Riemann equations.
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The Cauchy–Riemann equations are exactly the condition that a complex function f (z) is differ-
entiable (we say that f is holomorphic). Indeed we require

f ′(z0) = lim
z→z0

f (z)− f (z0)
z− z0

to be independent of the direction in which we approach z0. It is easy to see that independence is
equivalent to the Cauchy–Riemann equations.

The proposition makes clear the statement that a holomorphic function is ‘independent of z’.
Complex 1-forms and 2-forms can be integrated be integrating real and imaginary parts respec-

tively. One nice conclusion of Green’s theorem in the plane comes form applying it to the 1-form
α = f (z, z) dz. Then

dα = d f ∧ dz = (∂ f dz + ∂ f dz) ∧ dz = ∂ f dz ∧ dz.

Green’s theorem then says that ∫
C

f (z, z) dz =
∫

U
∂ f dz ∧ dz.

In particular if f is holomorphic then the right hand side is 0 in which case we have Cauchy’s theo-
rem, that the integral of a holomorphic function around a closed curve is zero.

7 The Gauss-Bonnet theorem

In this final section we think about the geometry of polygons, specifically geodesic triangles, on
surfaces, and prove (using Stokes’ theorem) a famous result that relates topological and differential-
geometric data on a surface.

7.1 Polygons on surfaces

First we think about how the angle made by a curve with an adapted vector field changes along the
curve.

Let x(z(t)) be a unit speed curve in an oriented surface x with adaptive frame field e1, e2, e3 (= U).
In terms of the angle ψ(t) the tangent vector x′(t) = dx(z′(t)) makes with e1, we have

x′(t) = cos ψ(t)e1 + sin ψ(t)e2.

Lemma 7.1. ψ′(t) = κg + ω12(z′).

Proof. Recall that the geodesic curvature is defined in terms of the covariant derivative: D d
dt

x′ =
κge3 × x′. Calculating we have:

D d
dt

x′ = ψ′(− sin ψe1 + cos ψe2) + ω12(z′)(− cos ψe2 + sin ψe2)

= (ψ′ −ω12(z′))(− sin ψe1 + cos ψe2)),
= (ψ′ −ω12(z′))e3 × x′,

hence κg = ψ′ −ω12(z′).
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Definition 7.2. Suppose that x(z(t)) is a unit speed curve which runs from t = t0 to t1. The total
rotation of the curve with respect to the frame field is given by∫ t1

t0

(ω12(z′) + κg) dt = ψ(t1)− ψ(t0).

In particular if x(z(t)) is a simple closed curve traversed counter-clockwise, then the above inte-
gral is 2π.

We now restrict to polygons whose edges are geodesics.

Definition 7.3. A polygon on a surface is a piecewise differentiable curve γ lying in a surface in such
a way that γ has no self-intersections and the differentiable pieces of γ are all geodesics.

Figure 16 shows an example. If we orient the surface, then γ bounds a region of the surface S and
has an induced orientation. We label the geodesic curves of γ as γ1, . . . , γn in order of the orientation,
and the internal angles A1, . . . , An.

A1

A2

A3A4

A5

A6

γ1

γ2

γ3

γ4

γ5

γ6

Figure 16: A polygon on a cylinder

Theorem 7.4. Let γ be a polygon on an oriented surface bounding a region S. Then the internal angles satisfy

n

∑
i=1

Ai = (n− 2)π +
∫

S
K.

Proof. Moving all the way around the polygon clearly rotates the tangent vector field through 2π
radians. We know that the total rotation of the vector field along each curve γi is

∫
γi

ω12, while the
rotation at each vertex is through an angle π − Ai. Adding up we have

2π =
n

∑
i=1

(π − Ai)︸ ︷︷ ︸
turning at vertices

+
n

∑
i=1

∫
γi

ω12︸ ︷︷ ︸
turning over each edge

= nπ +
∫

γ
ω12 −

n

∑
i=1

Ai.
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However, using Stokes’ theorem,∫
γ

ω12 =
∫

S
dω12 =

∫
S

Kθ1 ∧ θ2 =
∫

S
K,

which gives the result.

7.2 The geometry of a geodesic triangle

Before we move on, we can restrict to the simplest case, where γ is a geodesic triangle.

Definition 7.5. A geodesic triangle in a surface is three points joined to each other by (non-intersecting)
geodesics.

The above theorem says that the angles in a geodesic triangle4 satisfy

A + B + C− π =
∫
4

K.

Think about what this says for a minute. The familiar fact that the angles in a triangle add up to
π is false on any surface which is not flat.

Example. If4 is a geodesic triangle with angles A, B, C and area S then,

1. in the plane A + B + C = π.

2. on the unit sphere A + B + C = π + S.

3. in hyperbolic space A + B + C = π − S.

Notice that in hyperbolic space the area S of any geodesic triangle satisfies S ≤ π. Equality is iff
the three angles A, B, C are all zero. This only happens if the geodesics meet on the x-axis. We are
not saying that the total area of hyperbolic space is ≤ π (in fact it is infinite), rather than the largest
area you can fit inside a geodesic triangle is π. Somewhat counter-intuitively, all three edges of this
geodesic triangle have infinite length. A similar, but less geometrically interesting result comes from
observing that the fact that all angles in a triangle must be less than π forces the maximum area
bounded by a geodesic triangle on a sphere of radius 1 to be 2π (the triangle in question is not an
interesting triangle, rather it is a complete great circle with three marked points!).

There are many other things we could do in spherical or hyperbolic geometry. There are Sine
and Cosine rules in spaces of constant curvature. Suppose we have a geodesic triangle in a space of
constant Gauss curvature K, whose angles A, B, C are opposite the sides of lengths a, b, c respectively.
Then:

cos(c
√

K) = cos(a
√

K) cos(b
√

K) + sin(a
√

K) sin(b
√

K) cos C,

sin(a
√

K)
sin A

=
sin(b

√
K)

sin B
=

sin(c
√

K)
sin C

.

For the unit sphere we have K = 1 and the formulae simplify. For hyperbolic space with K = −1 the
expressions may be rewritten using cos(ia) = cosh(a) and sin(ia) = i sinh(a), so that the sines and
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cosines of lengths become hyperbolic sines and cosines with appropriate sign changes. To recover
the cosine and sine rules in flat space, divide both sides by

√
K and take the limit as K → 0.

The cosine rule allows us to recover the constant curvature Pythagoras’ theorem: for any right
angled triangle with hypotenuse of length c we have

cos(c
√

K) = cos(a
√

K) cos(b
√

K).

This doesn’t look like the Pythagoras’ theorem you’re used to, but if you take Taylor approximations
up to order two in K and substitute c4 ' (a2 + b2)2, we recover17

c2 ' a2 + b2 − K
3

a2b2.

You should expect the hypotenuse of a small right-angled triangle on a sphere to have shorter hy-
potenuse than in the plane. On a pseudosphere the hypotenuse should be longer. The approximation
is good if the lengths of a, b, c are small when compared to the curvature, typically a, b < 1/

√
|K|,

or a, b < r for a sphere. Indeed if a = b = µr, then the ratio of the length of the above Pythagorean

prediction to the correct hypotenuse is cP/c = µ
√

2−µ2/3
cos−1(cos2 µ) which is within 2% of 1 for µ < 1 and

within 9% for µ = π/2. This last is a geodesic triangle with edges going 1/4 of the way round the
sphere, larger than you’d ever likely need in navigation.

7.3 The Gauss-Bonnet theorem

For the full version of this result, we will need a stronger version of the theorem of the rotation of a
vector field around a geodesic polygon.

Theorem 7.6. Let S be a region on an oriented surface bounded by a piecewise differentiable closed curve γ.
Suppose that γ has n corners and that its internal angles are A1, . . . , An. Then

n

∑
i=1

Ai = (n− 2)π +
∫

S
K +

∫
γ

κg,

where the last integral18 is understood to be the sum over all the differentiable pieces of γ.

The proof is identical to that of Theorem 7.4 except that the rotation along each curve γi is as
given in Definition 7.2, where the geodesic curvature is not (necessarily) zero.

Consider a surface S with a boundary ∂S.

Definition 7.7. A dissection of S is a cutting up of S into polygons (for us geodesic polygons). The
number of faces F of the dissection is the number of polygons plus the number of regions with one
edge as part of the boundary. Let E be the number of edges of the dissection (number of edges of
polygons plus resulting boundary segments), and V the number of vertices of the dissection. The
Euler characteristic of S is defined to be

χ = F− E + V.
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Figure 17: Two dissections of a disk

The surface S could be simply a region of a plane. Figure 17 shows two possible dissections of a
disk. Both have χ = 1.

Proposition 7.8. The Euler characteristic is independent of dissection and thus well-defined.

Proof. Start by observing that if you subdivide a polygon into triangles, then χ is unaltered (join
up one vertex of a polygon with another and you get one extra edge, one extra face, and no extra
vertices). This means that we need only consider triangular dissections. Triangles can now be sub-
divided in various ways, again leaving χ unchanged. Thus, given two dissections into triangles, we
can subdivide each until we get a common subdissection. χ is thus independent of the choice of
dissection.

There is something missing here. A general dissection does not have the edges being geodesics,
so a complete proof would have to deal with this.

A region of the plane bounded by a simple closed curve (no intersections) has χ = 1. The sphere
(no boundary) has χ = 2 as can be seen in many ways. The torus has χ = 0 (for example take as a
dissection to orthogonal circles of curvature to get χ = F− E + V = 1− 2 + 1 = 0).

To get some examples of Euler characteristics, we do a little surgery and consider how the Euler
characteristic changes when you glue surfaces together.

Definition 7.9. Given two topological surfaces Σ1, Σ2, their connected sum Σ1#Σ2 is given by cutting a
small hole in each surface and pasting them together.

By topological surface we mean that nothing matters except the topology: we may deform Σ1, Σ2
and glue them together in any way we like and the topology of Σ1#Σ2 is unchanged.

Note that the connected sum of any surface with a sphere effectively leaves the surface un-
changed.

Theorem 7.10. χΣ1#Σ2 = χΣ1 + χΣ2 − 2.

Proof. Dissect Σ1, Σ2 into triangles. Remove one triangle on each surface to create a hole and stick
these together. Let F, V, E are the total number of faces, vertices and edges of both original dissections
added together, and F̂, V̂, Ê the faces, vertices and edges of the resulting dissection of Σ1#Σ2. Then
F̂ = F− 2, Ê = E− 3, V̂ = V − 3. The result follows.

17You can similarly take Taylor approximations of the cosine and sine rules to obtain the standard rules as approxima-
tions.

18Recall that the integral
∫

γ κg of a function over a curve is defined in Section 6.1.
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This allows us to easily calculate χ for any handlebody formed by taking the connected sums
of tori (since χtorus = 0, taking the connected sum with a torus decreases χ by 2). The genus g of a
handlebody is the number of holes in the surface. It is clear from the theorem that χ = 2(1− g).

Now that we have many examples of surfaces and their Euler characteristics we proceed to the
theorem.

Theorem 7.11 (Gauss-Bonnet). Let Σ be a surface in E3 with differentiable boundary ∂Σ. Then∫
Σ

K +
∫

∂Σ
κg = 2πχ.

Proof. Dissect Σ into triangles, where all edges except those that are part of the boundary ∂Σ are
geodesics. Let the internal triangles be labeled 41, . . . ,4F−n, and let the triangular faces bordering
the boundary be labeled4F−n+1, . . . ,4F. The boundary ∂Σ is thus made up of n (curved) edges, and
there are n triangles bordering the boundary.

First consider the geodesic internal edges (of which there are E− n). Each internal edge is com-
mon to two faces. Counting each internal edge twice, there are three edges per internal face (F − n
of them) and two edges for each boundary face. Thus 2(E− n) = 3(F − n) + 2n and so, for such a
dissection, E = 3F+n

2 . The Euler characteristic may therefore be written

χ = F− 3F + n
2

+ V = V − 1
2
(F + n).

Now, for each triangle4j (internal and external), Aj + Bj + Cj − π =
∫
4j

K +
∫

∂4j
κg. Summing over

j gives ∫
Σ

K +
∫

∂Σ
κg =

F

∑
j=1

(Aj + Bj + Cj)− πF.

Adding up the angles around all the V − n internal vertices yields 2π for each, while for each of the
n boundary vertices we get an angle of π. Hence∫

Σ
K +

∫
∂Σ

κg = 2π(V − n) + πn− πF = 2π(V − (F + n)/2) = 2πχ.

The theorem may be modified to include the case where the boundary ∂Σ is piecewise differen-
tiable with internal angles at its corners φi. It can also be simplified to the case where the boundary
∂Σ is a closed geodesic, or is empty. In the latter case, we call Σ a handlebody (e.g. a sphere, torus,
pretzel, etc. . . ).

Corollary 7.12. Let Σ be a handlebody in E3. Then∫
Σ

K = 2πχ.

The Gauss–Bonnet theorem is particularly powerful because it relates the topological Euler char-
acteristic to the differential gauss curvature. χ is a single number, which depends only on topology:
twisting, squashing or stretching or otherwise altering a surface in any way that does not involve
puncturing it, leaves χ unchanged. For example, the famous quip that a doughnut is topologically
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equivalent19 to a coffee mug is not just a play on the fact that mathematicians seem to require an
abundance of both: they both have χ = 0. A human (supposing of course that we are considered
to be without holes. . . ) has χ = 2, seeing as we are just a highly deformed sphere. The Gauss cur-
vature, by contrast, is an entirely local function. Deforming a surface will almost certainly change K
enormously. The amazing fact is that the total curvature in the surface is unchanged.

In particular, for any deformed sphere,
∫

Σ K = 4π. For a torus,
∫

Σ K = 0. We can say, very
non-precisely, that any handlebody with 2 or more holes must have more negative curvature than
positive. In particular, any torus embedded in E3 must both have points where K is positive and
negative (since K is continuous and not identically zero). Indeed we have proved that the only
handlebodies whose curvature is everywhere positive are topological spheres. For more examples of
applications see the homework.

The full version of the Gauss–Bonnet theorem reads that for a surface Σ with boundary ∂Σ made
up of n differentiable curves with internal angles A1, . . . , An we have∫

Σ
K +

∫
∂Σ

κg +
n

∑
i=1

(π − Ai) = 2πχ.

Generializations of the Gauss–Bonnet theorem have enormous applications throughout Geometry
and Mathematical Physics.

19Homeomorphic in technical language.
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