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1 Introduction

In this section1 we motivate the study of number theory via some classic problems, and investigate
the familiar Pythagorean triples.
While modern number theory has many applications and invokes a wide array of techniques from
across mathematics, at its heart it is concerned with the integers and with integer solutions to equa-
tions: these are called Diophantine Equations in honor of Diophantus of Alexandria, a Greek Math-
ematician of the 3rd century CE, and one of the fathers of number theory. Here are some classic
problems and examples; some at least should be familiar to you.

1. Find all the integer points (x, y) on the line 3x − 2y = 1. The answer is (x, y) = (1 + 2n, 1 + 3n)
where n ∈ Z. Can you prove right now that these are all the solutions?

2. If n is an odd integer then n2 − 1 is a multiple of 8.

3. Find all Pythagorean triples: positive integers x, y, z such that x2 + y2 = z2.

4. Prime numbers: if n is prime, what is the next prime? Is there a formula for the nth prime? Is
n2 + n + 41 always prime whenever n is an integer?

5. Which integers can be written as the sums of two squares? Three? Four?

6. Fermat’s Last Theorem:2 if n ≥ 3 is an integer, then there are no positive integers x, y, z such
that xn + yn = zn.

1.1 Notation & Divisibility

To orient ourselves, we start by standardizing notation for our sets of interest.

Natural Numbers: N = {1, 2, 3, 4, . . .}
Whole Numbers: N0 = {0, 1, 2, 3, . . .}
Integers: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
Rational Numbers: Q = {m

n : m ∈ Z, n ∈ N}

The real numbers R and complex numbers C will not play much role in this class.

1Corresponds roughly to § 1–3 in the textbook: A Friendly Introduction to Number Theory, Joseph H. Silverman, 4th ed.
2Historical note: In 1637 Pierre de Fermat left a note in the margin of a copy of Diophantus’ Arithmetica famously

claiming to have proved his ‘theorem.’ A complete proof took mathematicians another three and a half centuries. . .



Divisibility in the integers

After years of calculus, restricting oneself to the integers can feel alien. The fundamental difficulty is
that division is often impossible: e.g. 7 ÷ 4 = 7

4 is not an integer! In algebraic language the integers
fail to be closed under division and form merely a ring, not a field like the rational or real numbers.
Our first order of business is to identify those pairs of integers for which division is permitted.

Definition 1.1. Let m, n ∈ Z. We say that m divides n, and write m |n, if

∃k ∈ Z such that n = km

We also say that m is a divisor or factor of n.
A common divisor/factor of two integers x, y is any (positive) integer d such that d | x and d | y. We say
that x, y are relatively prime or coprimea if the only positive common factor is 1.

aColloquially, “x, y have no common factors.”

Examples 1.2. 1. By taking k = 3 in the definition, we see that 4 |12 (that is 12 = 3 · 4).

2. By contrast, 7 ∤9 since ∄k ∈ Z such that 9 = 7k.

3. For every m ∈ Z we have m | 0, since 0 = 0m (i.e. k = 0 works in the definition!). This includes
the counterintuitive fact that 0 |0.

4. The common divisors of x = 18 and y = 12 are 1, 2, 3 and 6.

5. −16 and 27 are relatively prime.

A few observations and tips are in order concerning the definition.

• For brevity, the word positive is usually omitted when discussing (common) divisors. For in-
stance, in Example 4 above, −2 plainly divides both 18 and 12.

• It would be tempting to say that m divides n if and only if n
m is an integer but this is incorrect:

– Certainly n
m ∈ Z =⇒ m |n is true (take k = n

m ).

– The converse is false; 0 |0 is the sole counter-example.

More philosophically, since divisibility is solely a property of the integers, it is cleaner not to
introduce rational numbers into the discussion.

• Keep the line vertical! m | n is a proposition (a statement which is either true or false), whereas
m/n = m

n is (usually) a rational number. Some version of the following is a very common
mistake:

m |n↭ m/n↭
m
n

∈ Z

Not only are we confusing propositions with numbers, but in the context of the previous ob-
servation, the resulting fraction is upside-down!
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Exercises 1.1 The exercises in this chapter are to be treated informally. Rigorous arguments might
require some facts about integers with which you’re only somewhat familiar (e.g. prime factorization)
but that we’ll develop properly in future chapters. The point is to investigate and to play.

1. An integer is triangular if it is the sum of the first n natural numbers. For example:

1 = 1
3 = 1 + 2
6 = 1 + 2 + 3
10 = 1 + 2 + 3 + 4

(a) Prove that a number is triangular if and only if it may be written in the form 1
2 n(n + 1)

where n is a natural number.
(b) A number is square-triangular if it is both square (= m2) and triangular. Certainly 1 is

square-triangular. Find the next square-triangular number.
(c) Finding all square-triangular numbers m2 is equivalent to finding all integer solutions

(m, n) to the equation

m2 =
1
2

n(n + 1)

Prove that this is equivalent to finding integers (m, k) such that

m2 = k(2k + 1) or m2 = k(2k − 1)

(Hint: n is either even or odd. . . )
(d) Suppose that d ∈ N is a divisor/factor of both k and 2k + 1. Explain why d = 1.
(e) By part (d), if (m, k) solves m2 = k(2k + 1), then both k and 2k + 1 are perfect squares.

Prove that finding square-triangular numbers is equivalent to finding all integer solutions
(x, y) to the equationsa

x2 − 2y2 = ±1

(f) Find the first few pairs of solutions (x, y) to these equations and therefore find the first five
square-triangular numbers.
(Hint: This is easier with a spreadsheet or by writing some computer code. Try evaluating√

2y2 ± 1 for y = 1, 2, 3, 4, . . . and spotting when this is an integer.)

2. Try summing the first few odd numbers and see if the results satisfy some pattern. Once you
find the pattern, express it algebraically. Can you find a geometric verification that your formula
is correct?

(Hint: How can you create a square with n + 1 dots per side from a square with n dots per side?)

3. The consecutive odd numbers 3, 5, and 7 are all primes. Are there infinitely many such prime
triplets? That is, are there infinitely many prime numbers p such that p + 2 and p + 4 are also
prime?

aThe equation x2 − 2y2 = 1 is an example of Pell’s equation, the solutions of which are related to fun things such as
continued fractions and rational approximations to

√
2. For example (99, 70) is a solution and 99

70 = 1.4142857 . . . ≈
√

2.
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1.2 Pythagorean Triples

We consider positive integers x, y, z for which x2 + y2 = z2. It is easy to find many:

1. Take a known triple, e.g. (3, 4, 5), and multiply by a constant. Thus (3n)2 + (4n)2 = (5n)2 for
any n ∈ N. We immediately have infinitely many triples.

2. Use a spreadsheet or computer program: generate pairs (x, y) of integers, take the square-root
of x2 + y2, and test whether this is an integer. The following snippets (loosely C++/Python) do
exactly this3 returning all Pythagorean triples with x, y ≤ 100.
for(int x=1; x<=100; ++x)

{for(int y=x; y<=100; ++y)

{real z=sqrt(x^2+y^2);

if(z-floor(z)==0){write(x,y,z);}

}

}

for x in range (1,101):

for y in range (x,101):

z=sqrt(x^2+y^2);

if z-floor(z)==0:

print(x,y,z);

We need a different approach if we want to describe all triples. First we reduce the problem a little.

Definition 1.3. A Pythagorean triple (x, y, z) is primitive if no pair of x, y, z has a common factor.

For instance (3, 4, 5) is primitive, while (6, 8, 10) is not. We now state some basic results that help
narrow our search:

Lemma 1.4. Suppose that (x, y, z) is a Pythagorean triple.

1. If any pair of x, y, z have a common factor, the third shares this factor.

2. All non-primitive triples are a common multiple of a primitive triple.

3. If (x, y, z) is primitive, then z is odd.

Proof. 1. Suppose WLOG that d is a common divisor of x, y. Then d2 | z2 and so4that d | z.

2. If (x, y, z) is non-primitive, then some pair has a common divisor, which divides all three by
part 1. Divide x, y, z by their greatest common factor d to obtain the primitive triple ( x

d , y
d , z

d ).

3. If (x, y, z) is primitive, then at most one of x, y, z can be even. Moreover, they cannot all be odd,
since odd + odd ̸= odd.

If z = 2m were even, then x = 2k + 1 and y = 2l + 1 are both odd. But then

4m2 = z2 = x2 + y2 = (2k + 1)2 + (2l + 1)2 = 4(k2 + l2 + k + l) + 2.

The right hand side is not divisible by 4, so we have a contradiction.

3This is inefficient but is fine for an initial investigation. If you want to play with it, try entering the C version into the
Asymptote Web Application, or the Python into a Sage Cell. A more efficient algorithm might be based on Theorem 1.5.

4That d2 | z2 =⇒ d | z is not as obvious as it may seem: it requires unique prime factorization (later).
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To summarize the Lemma, it is enough for us to find all primitive Pythagorean triples (x, y, z) where
x, z are odd and y is even. In such a situation, we start by factorizing:

x2 = z2 − y2 = (z + y)(z − y)

Suppose that z + y and z − y had a common factor d: plainly d is odd, since both z ± y are odd. Then
∃a, b ∈ Z for which{

z + y = ad
z − y = bd

=⇒
{

2z = (a + b)d
2y = (a − b)d

Since d is odd, it must be a common divisor of both y and z: since (x, y, z) is primitive, d = 1.
It now follows5 that z + y and z − y are both perfect squares: write

z + y = s2, z − y = t2

and solve for y, z and x = st. Again, s, t are relatively prime for otherwise y, z would have a common
factor. They must also plainly both be odd. Finally, it is worth checking that the expressions we’ve
found really do provide a triple:

(st)2 +

(
s2 − t2

2

)2

= s2t2 +
s4 + t4 − 2s2t2

4
=

s4 + t4 + 2s2t2

4
=

(
s2 + t2

2

)2

We have therefore proved the main classification result.

Theorem 1.5. (x, y, z) is a primitive triple with x odd and y even if and only if then there exist odd
coprime integers s > t ≥ 1 such that

x = st, y =
s2 − t2

2
, z =

s2 + t2

2

All Pythagorean triples are simply multiples of these or result from switching the order of x, y.

Examples 1.6. 1. Take s = 9, t = 5 to obtain the primitive triple (45, 28, 53).

2. The non-primitive triple (160, 168, 232) has common divisor d = 8 and is therefore 8 times the
primitive triple (20, 21, 29). This has x even and so we compute

s =
√

z + x =
√

49 = 7, t =
√

z − x =
√

9 = 3

Putting it together, we obtain the representation

(160, 168, 232) = 8
(

s2 − t2

2
, st,

s2 + t2

2

)
= 8

(
72 − 32

2
, 7 · 3,

72 + 32

2

)
Other descriptions of the Pythagorean triples are available: see e.g. Exercise 2.

5This again requires unique factorization. If p is a prime factor of x, then p2 | x2. Both factors of p must divide either
z + y or z − y, since these are coprime. Now repeat with all primes dividing x. . .
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Exercises 1.2 1. (a) We showed that for any primitive Pythagorean triple (x, y, z), either x or y
must be even. Use a similar argument to prove that either x or y must be a multiple of 3.

(Hint: what remainders can squares have after dividing by three?)

(b) By examining a list of primitive Pythagorean triples, make a guess about when x, y or z is
a multiple of 5. Try to show that your guess is correct.

2. Try this alternative approach to finding all primitive Pythagorean triples (x, y, z) where y is
even. Let ŷ = 1

2 y. Then

ŷ2 =
1
4

y2 =
1
4
(z2 − x2) =

z − x
2

· z + x
2

The right side is the product of two coprime integers, which must therefore both be perfect
squares. Define positive integers u, v by

u2 =
1
2
(z + x), v2 =

1
2
(z − x)

(a) Explain why z−x
2 and z+x

2 are coprime integers.

(b) Find x, y and z in terms of u and v.

(c) Argue that u and v have no common factor and that precisely one must be even.

(d) Compare with the solution in Theorem 1.5: how do s and t relate to u and v?

3. Let m ≥ 2 be an integer and write the sum 1
m−1 +

1
m+1 as a fraction in lowest terms. For example

1
1 +

1
3 = 4

3 , 1
2 +

1
4 = 3

4 , and 1
3 +

1
5 = 8

15 .

(a) Compute the next three examples.

(b) Examine the numerators and denominators of the fractions in (a) and compare them with
a table of primitive Pythagorean triples. Formulate a conjecture about such fractions.

(c) Prove that your conjecture is correct.
(Hint: m − 1 and m + 1 differ by 2. . . )
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1.3 Pythagorean Triples and the Unit Circle

The previous discussion of Pythagorean triples was algebraic. Now we introduce a little geometry.
If (x, y, z) is a (primitive) Pythagorean triple, observe that

x2 + y2 = z2 =⇒
( x

z

)2
+

(y
z

)2
= 1

whence ( x
z , y

z ) is a rational point (point with rational co-ordinates) on the unit circle.
Conversely, suppose that α and β are positive rational numbers such that α2 + β2 = 1. Write α, β in
lowest terms over the smallest common denominator: i.e.

(α, β) =
( x

z
,

y
z

)
where z is the smallest positive integer for which this is possible. Now observe that( x

z

)2
+

(y
z

)2
= 1 =⇒ x2 + y2 = z2

so that (x, y, z) is a Pythagorean triple! More is true, if (x, y, z) were non-primitive, then all three
would be divisible by some d ≥ 2 thus contradicting the minimality of z. To summarize:

Theorem 1.7. 1. If (x, y, z) is a primitive Pythagorean triple, then ( x
z , y

z ) is a rational point in the
first quadrant of the unit circle.

2. If (α, β) is a rational point in the first quadrant of the unit circle with α, β in lowest terms, then
α = x

z and β = y
z where (x, y, z) is a primitive Pythagorean triple.

We could now use Theorem 1.5, to obtain an expression for the rational points on the circle. Instead,
we start with the circle and work geometrically. . .
Suppose P = (α, β) is a point on the unit circle with rational
co-ordinates. Provided α ̸= 0, the line joining P to the south
pole S = (0,−1) has rational gradient

y = mx − 1 where m =
β + 1

α
∈ Q

By substituting y = mx − 1 into the equation for the circle,
x2 + y2 = 1 we obtain a relationship between P and m:

x2 + m2x2 − 2mx + 1 = 1 =⇒ x[(m2 + 1)x − 2m] = 0

=⇒ x = 0,
2m

m2 + 1
S = (0,−1)

N

y = mx − 1

P = (α, β)

Plainly x = 0 corresponds to S = (0,−1), while the other solution yields the second intersection P:

y = mx − 1 =
2m2

m2 + 1
− 1⇝ P = (α, β) =

(
2m

m2 + 1
,

m2 − 1
m2 + 1

)
The correspondence is in fact tighter: if m = 0, we recover S = (0,−1), while6 m = ∞ results in the
north pole N = (0, 1). We have therefore proved:

6Take limits lim
m→∞

(x, y) = (0, 1).
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Theorem 1.8. The extended rational numbers Q ∪ {∞} are in bijective correspondence with the
rational points (α, β) on the unit circle:

m 7→ (α, β) =

(
2m

m2 + 1
,

m2 − 1
m2 + 1

)
where m is the gradient of the line joining the south pole (0,−1) with (α, β).

Example 1.9. The above picture shows the line with gradient m = 14
3 , which generates the point

P =
( 28

3
196
9 +1

,
196
9 −1

196
9 +1

)
= ( 84

205 , 187
205 ). Note that (84, 187, 205) is a primitive Pythagorean triple.

This method may also be applied to other quadratic curves.

Corollary 1.10. Suppose C is a quadratic curve in the plane whose equation has rational coefficients

ax2 + bxy + cy2 + dx + ey + f = 0 where a, b, c, d, e, f ∈ Q

and on which lies a rational point S. Then all rational points on C may be found by drawing a line
through S which is either vertical or has rational gradient and intersecting it with C.

Example 1.11. To find all rational points on the hyperbola x(y + x) = 3, we start by choosing the
rational point S = (1, 2). The line through S with gradient m has equation

y = m(x − 1) + 2

Substituting into the original curve, we obtain

(m + 1)x2 + (2 − m)x − 3 = 0
=⇒ (x − 1)[(m + 1)x + 3] = 0

=⇒ x = 1,− 3
m + 1

It follows that all rational points on the hyperbola are given by

(x, y) =
(
− 3

m + 1
,

2 − 2m − m2

m + 1

)
: m ∈ Q \ {−1}

In this case, m = −4 returns the base point S.

−3

−2

−1

1

2

3y

−3 −2 −1 1 2 3
x

S

P

The line with gradient m = −1 and the vertical line (m = ∞) do not yield solutions: this is geomet-
rically clear since they are parallel to the asymptotes of hyperbola. A full discussion of the problem
requires an introduction to projective geometry, in which it can be seen that the lines intersect the
hyperbola in so-called ideal points at infinity. The details are a matter for another course.

Hopefully these introductory discussions convince you of the variety of approaches that may be re-
quired in number theory. It is now time to begin a thorough discussion of the integers, of divisibility,
and particularly the prime numbers.
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Exercises 1.3 1. (a) Use lines through the point (1, 1) to describe all points of the circle x2 + y2 = 2
whose co-ordinates are rational numbers.

(b) (Harder) Repeat part (a) for the conic with equation x2 − xy − 3y2 = −1 and initial point
(2, 1).
(Hint: remember that there’s another point with x = 2. . . )

2. Suppose you attempt to apply the same procedure to find all rational points on the circle x2 +
y2 = 3. What goes wrong?

(Hint: If x, y are rational, write both as fractions over the same denominator. . . )

3. (a) Consider a general cubic polynomial equation

(x − a)(x − b)(x − c) = x3 + p2x2 + p1x + p0 = 0

where a, b, c are the roots. Prove that if the coefficients p0, . . . , p2 are rational numbers and
that two of the roots are rational, then so is the third root.

(b) The curve y2 = x3 + 8 contains the points (1,−3) and (− 7
4 , 13

8 ). The line through these two
points intersects the curve in exactly one other point. Use part (a) to help you find it.

The numbers are a little tricky, but persevere: this generalization of the line-intersection method to
cubic curves is particularly important with regard to the construction of addition on elliptic curves,
a central topic in modern number theory.
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