
2 Divisibility, Primes & Unique Factorization

The main goal of this chapter is to develop the Fundamental Theorem of Arithmetic, or Unique Factor-
ization Theorem, which states that every integer ≥ 2 can be written uniquely as a product of primes,
e.g.,

36 = 22 · 32, 986 = 2 · 17 · 29, 10001 = 73 · 137

As a precursor, we review some material which you should have encountered in a previous course.

2.1 The Greatest Common Divisor and the Euclidean Algorithm

Our first definition recalls and extends the idea of divisibility seen in the Introduction.

Definition 2.1. Let a, b, d be integers: if d | a and d |b then d is a common divisora of a and b.
If a and b are not both zero, then the greatest common divisor of a, b is written d = gcd(a, b).
We say that a and b are coprime or relatively prime if gcd(a, b) = 1.

aBy convention one tends to list only positive common divisors.

Since there are finitely many positive common divisors (all satisfy d ≤ max(|a| , |b|)) gcd(a, b) must
therefore exist. The definition may be extended to any list of numbers: gcd(a1, . . . , an) is the largest
divisor of all the numbers a1, . . . , an.

Examples 2.2. gcd(0, 9) = 9, gcd(45, 33) = 3, gcd(162, 450) = 18.

Our first goal is to develop an algorithm to efficiently compute gcd’s. This starts with the notion of
division in the integers.

Theorem 2.3 (Division algorithm). If a ∈ Z and b ∈ N, then there exist unique q, r ∈ Z (the
quotient and remainder) such that

a = qb + r, 0 ≤ r < b

Example 2.4. The division algorithm should reminder you of elementary school math!

13 ÷ 4 = 3 r 1
b ÷ a = q r r

}
⇐⇒

{
13 = 3 · 4 + 1

a = q · b + r

Proof. Consider the set S = N0 ∩ {a − bz : z ∈ Z}. This is a non-empty (e.g. take z = − |a|) subset of
the natural numbers, whence (well-ordering) it has a minimum element r ∈ S.
Certainly r ∈ [0, b) for otherwise r − b ∈ S contradicts the minimality of r. Now let q = a−r

b be the
corresponding choice of z to establish existence.
For uniqueness, suppose that a = q1b + r1 and a = q2b + r2 where 0 ≤ r1, r2 < b. Then

−b < r1 − r2 < b and r1 − r2 = (q2 − q1)b

Thus r1 − r2 is divisible by b and lies in the interval (−b, b). Clearly r2 = r1, whence q2 = q1 and we
have uniqueness.
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Is it really an algorithm? The presentation of Theorem 2.3 doesn’t seem very algorithmic: indeed
we simply take it as given that we can find q, r by whatever means we wish (messing with a calculator
is fine!). To see it more as an algorithm, consider the case where a > 0 and follow these instructions:

1. Is a < b? If Yes, stop: r = a and q = 0.

2. Otherwise, compute a − b.

3. Is a − b < b? If Yes, stop: r = a − b and q = 1.

4. Otherwise, compute a − 2b, etc.

5. Repeat until the process terminates.

Simple code

int a=240; int b=7;

int q=0; int r=a;

while(r>=b){r=r-b; q=q+1;}

write(q,r);

The simple program computes q = 34 and r = 2 from a = 240 and b = 7 by repeatedly subtracting 7
from 240 until it can no longer do so. You can check that 240 = 34 · 7 + 2. If you like, you can paste
and edit the code here.

The Euclidean Algorithm For us, the beauty of the division algorithm is that it transfers the gcd of
one pair of numbers to another. For instance, dividing 57 ÷ 12 we see that

57 = 4 · 12 + 9 and gcd(57, 12) = 3 = gcd(12, 9)

More generally, suppose a = bq+ r. Plainly, a and b are both divisible by gcd(b, r). Since any common
divisor of a, b can be no larger than the greatest such;

gcd(b, r) ≤ gcd(a, b)

By symmetry r = a − bq =⇒ gcd(a, b) ≤ gcd(b, r), and we conclude:

Lemma 2.5. If a = bq + r, then gcd(a, b) = gcd(b, r).

If a, b > 0, we may therefore compute gcd(a, b) by repeatedly invoking the division algorithm until
we obtain a remainder rk+1 = 0: this process is the Euclidean algorithm.

(Line 1) a = q1b + r1 0 ≤ r1 < b
(Line 2) b = q2r1 + r2 0 ≤ r2 < r1

(Line 3) r1 = q3r2 + r3 0 ≤ r3 < r2
...

(Line k) rk−2 = qkrk−1 + rk 0 ≤ rk < rk−1

(Line k + 1) rk−1 = qk+1rk + 0

Theorem 2.6. The Euclidean algorithm terminates with final non-zero remainder rk = gcd(a, b).

Proof. A decreasing sequence of positive integers b > r1 > r2 > r3 > · · · > 0 takes at most b steps to reach
0 (in practice far fewer), whence the algorithm terminates in at most b steps.
Finally, by Lemma 2.5,

gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rk−1, rk) = gcd(rkqk+1, rk) = rk

If a or b are negative, simply apply the algorithm to the pair |a| , |b|.
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Example 2.7. We use the algorithma to compute gcd(161, 140)

161 = 1 · 140 + 21
140 = 6 · 21 + 14

21 = 1 · 14 + 7
14 = 2 · 7

 =⇒ gcd(161, 140) = 7

We could instead have evaluated gcd(161, 140) by listing the positive divisors of 140 (namely 1, 2,
4, 5, 7, 10, 14, 20, 28, 35, 70, 140) and checking which of these is also a divisor of 161. For larger
a, b, finding all the divisors is prohibitively time-consuming, whereas the Euclidean algorithm will
always do the job in a (relatively) efficient manner.
To motivate the next result, we now reverse the algorithm to express the gcd as a linear combination
of the original pair (161, 140):

7 = 21 − 1 · 14 (rearrange line 3)
= 21 − (140 − 6 · 21) (substitute for r2 = 14 using line 2)
= −140 + 7 · 21
= −140 + 7 · (161 − 140) (substitute for r1 = 21 using line 1)
= 7 · 161 − 8 · 140

aRemainders are in boldface for clarity. We also do this in the next proof. Consider underlining when writing by hand
to help avoid mistakes. Observe how one can trace the same remainder diagonally ↙.

The reversal of the algorithm seen in the example is hugely important and can be done in general.

Theorem 2.8 (Extended Euclidean Algorithm/Bézout’s Identity). Suppose that a, b ∈ Z are not
both zero. Then there exist integers x, y such that

gcd(a, b) = ax + by

There are a great many existence theorems in Mathematics, but few of them tell you explicitly how
to construct the desired objects.

Proof. Suppose a, b > 0 and that we’ve applied the Euclidean algorithm to obtain rk = gcd(a, b).
Rearrange the penultimate line and repeatedly move up the algorithm using each line to substitute
for the smallest remainder:

rk = rk−2 − qkrk−1 (line k)
= rk−2 − qk(rk−3 − qk−1rk−2) = (1 + qk−1qk)rk−2 − qkrk−3 (line k − 1)
= (1 + qk−1qk)(rk−4 − qk−2rk−3)− qkrk−3 = (· · · )rk−3 + (· · · )rk−4 (line k − 2)
...
= (· · · )b + (· · · )r1 (line 2)
= (· · · )a + (· · · )b (line 1)

Each omitted term (· · · ) is plainly an integer, obtained by adding and multiplying the quotients qj.
If either a or b is negative, compute with |a| , |b| and adjust ±-signs accordingly.
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Example 2.9. Find d = gcd(1132, 490) and integers x, y such that d = 1132x + 490y.
Simply apply the algorithm:

1132 = 2 · 490 + 152
490 = 3 · 152 + 34
152 = 4 · 34 + 16

34 = 2 · 16 + 2
16 = 8 · 2

 =⇒ gcd(1132, 490) = 2

Now reverse the steps:

2 = 34 − 2 · 16 (line 4)
= 34 − 2 · (152 − 4 · 34) = 9 · 34 − 2 · 152 (line 3)
= 9 · (490 − 3 · 152)− 2 · 152 = 9 · 490 − 29 · 152 (line 2)
= 9 · 490 − 29 · (1132 − 2 · 490) = 67 · 490 − 29 · 1132 (line 1)

Hence (x, y) = (−29, 67) is a solution to d = 1132x + 490y.

As an example of the immediate theoretical power of Theorem 2.8 we prove the following:

Corollary 2.10. If a, b are coprime and a |bc, then a | c.

Proof. Since gcd(a, b) = 1, ∃x, y ∈ Z such that

1 = ax + by =⇒ c = acx + bcy

This last is divisible by a by assumption.

Now we apply Bézout to obtain an important visualization of gcd(a, b).

Corollary 2.11. Suppose a, b ∈ Z are not both zero and d = gcd(a, b). Then

{ax + by : x, y ∈ Z} = {md : m ∈ Z}

Plainly d is the least positive member of this set.

Proof. Write D = {ax + by : x, y ∈ Z} and M = {md : m ∈ Z}.
(D ⊆ M) Certainly d | ax + by for all x, y ∈ Z, whence every element of D is a multiple of d.
(M ⊆ D) By Bézout’s identity, d = aX + bY for some X, Y ∈ Z, and so d ∈ D. It follows that

md = a(mX) + b(mY) ∈ D

In more advanced treatments involving rings other than the integers, Corollary 2.11 is often used as
the definition of gcd(a, b). This has the advantage of permitting one to define the gcd without first
requiring a Euclidean algorithm: many more rings have a gcd than have a Euclidean algorithm!
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Linear Diophantine Equations

As a simple application, we consider integer solutions x, y to equations ax + by = c where a, b, c ∈ Z

are given. Bézout’s identity tells us how to find a solution whenever c = gcd(a, b). With the help of
Corollary 2.11, this is essentially all we need.

Corollary 2.12. The Diophantine equation ax + by = c has a solution if and only if gcd(a, b) | c.

Proof. A solution exists ⇐⇒ c ∈ {ax + by : x, y ∈ Z} ⇐⇒ c is a multiple of gcd(a, b).

Example 2.13. Show that 147x − 45y = 2 has no solutions in integers.

147 = 3 · 45 + 12
45 = 3 · 12 + 9
12 = 1 · 9 + 3

9 = 3 · 3

 =⇒ gcd(147, 45) = 3 ∤2

Now let d = gcd(a, b) and suppose that d | c so that we have a solution (x0, y0) to ax + by = c.
Consider (x, y) = (x0 + xh, y0 + yh) and observe that1

ax + by = c ⇐⇒ c = a(x0 + xh) + b(y0 + yh) = c + axh + byh

⇐⇒ axh + byh = 0 ⇐⇒ b
d

yh = − a
d

xh

Since a
d , b

d are coprime integers, Corollary 2.10 shows that b
d divides xh. This is enough to prove:

Corollary 2.14. Let d = gcd(a, b) and suppose (x0, y0) is a solution to the Diophantine equation
ax + by = c. Then all solutions may be found via

(x, y) =
(

x0 +
b
d

t, y0 −
a
d

t
)

where t ∈ Z

Examples 2.15. 1. Find all the solutions to the Diophantine equation 161x + 140y = −14.

By Example 2.7 we have d = gcd(161, 140) = 7 and a solution (7,−8) to 161x + 140y = 7.
Multiply by −2 to obtain a suitable (x0, y0) and apply the Theorem

(x, y) =
(
−14 +

140
7

t, 16 − 161
7

t
)
= (−14 + 20t, 16 − 23t) : t ∈ Z

2. Find all solutions in integers to the equation 490x − 1132y = 4.

By Example 2.9, we know that d = gcd(1132, 490) = 2 and that (−29, 67) is a solution to
1132x+ 490y = 2. Rearranging and taking ±-signs into account, we see that (x0, y0) = (134, 58)
is a solution to the equation of interest. The general solution is therefore

(x, y) =
(

134 +
1132

2
t, 58 +

490
2

t,
)
= (134 + 566t, 58 + 245t) : t ∈ Z

1We use (xh, yh) since this solves the associated homogeneous equation axh + byh = 0. The method of solution is analo-
gous to solving non-homogeneous linear ordinary differential equations and linear algebra problems Ax = b.
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Exercises 2.1 1. Verify the following elementary properties of divisibility, where a, b, c are integers.

(a) a |0, a | a and ±1 | a.

(b) If a |b and b | c, then a | c (divides is transitive).

(c) If a |b and a | c, then a | (bx + cy) for all x, y ∈ Z.

2. Use the Euclidean Algorithm to compute the following (use a calculator!)

(a) gcd(121, 105) (b) gcd(12345, 67890) (c) gcd(54321, 9876)

3. Evaluate gcd(4655, 12075) in the form 12075x + 4655y where x, y ∈ Z.

4. Find all the integer solutions (if any exist) to the following equations.

(a) 4x − y = 7 (b) 12x + 4y = 10 (c) 105x − 121y = 1

(d) 2072x + 1813y = 2849 (e) 12345x − 67890y = gcd(12345, 67890)

(f)

{
7x + 2y = 21
3x − 7z = 2

(use the method several times)

5. Find all solutions of 19x + 20y = 1909 with x > 0 and y > 0.

6. Let r0, r1, r2, . . . be the successive remainders in the Euclidean Algorithm applied to a > b > 0
(take b = r0). Show that every two steps reduces the remainder by at least one half: i.e.,

ri+2 <
1
2

ri ∀i = 0, 1, 2, 3 . . .

Conclude that the Euclidean algorithm terminates in at most 2 log2 b steps. In particular, show
that the number of steps is at most seven times the number of digits in b.

7. The Fibonacci numbers (Fn)∞
n=1 = (1, 1, 2, 3, 5, 8, 13, . . .) are defined by the recurrence relation{

Fn+2 = Fn+1 + Fn, ∀n ∈ N,
F1 = F2 = 1

(a) Prove that no two successive Fibonacci numbers have a common divisor a > 1.

(b) Use the Euclidean algorithm to verify gcd(F7, F6) = gcd(13, 8) = 1. Repeat for gcd(F8, F7).

(c) Make a hypothesis about how many steps are necessary in order to compute gcd(Fn+1, Fn).

(d) Compute 2 log2 Fn for n = 4, 5, 6, 7, 8. Considering question 6, why might we say that the
Euclidean algorithm is very slow when applied to successive Fibonacci numbers?

8. Let a, b, r, s be given constants. Prove that the arithmetic progressions

{ax + r : x ∈ Z} and {by + s : y ∈ Z}

intersect if and only if gcd(a, b) | (s − r).

9. Show that if ad − bc = ±1, then the fraction a+b
c+d is in reduced form (i.e. gcd(a + b, c + d) = 1).

10. Show that if gcd(a, b) = 1, then gcd(a − b, a + b) = 1 or 2. Exactly when is the value 2?
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2.2 Primes and Unique Factorization

Now we turn to the building blocks of the integers, the prime numbers. The very idea that the primes
are ‘building blocks’ is a colloquial expression of a famous result, examples of which are on page 1.

Theorem 2.16 (Fundamental Theorem of Arithmetic/Unique Prime Factorization).
Every integer z is either zero, ±1, or may be uniquely factored in the form

z = upµ1
1 · · · pµn

n

where u = ±1, p1 < · · · < pn are primes and each µi ∈ N.

The first question is obvious: what is a prime? You should have previously encountered two suitable
notions, though algebraically they present quite differently.

Definition 2.17. An integer z ≥ 2 is said to be:a

Prime if whenever it divides a product, it divides one of the factors: z | ab =⇒ z | a or z |b

Irreducible if its only positive divisors are 1 and itself: ∀k ∈ N, k | z =⇒ k = 1 or z.

Composite if it is not irreducible: ∃a, b ∈ N such that z = ab and 2 ≤ a, b < z.

aA note for algebraists who might have seen these definitions elsewhere. We follow the convention in the integers
that primes, irreducibles and composites must be positive. A more formal algebraic definition allows, say −5 to be
prime/irreducible. More properly, if z is prime/irreducible in a ring, so is uz where u is a unit: the only units in the
ring of integers are ±1.

Examples 2.18. 1. The integer z = 5 is prime/irreducible:

Prime: for example 5 | (15 · 11) and 5 |15.

Irreducible: its only positive divisors are 1 and 5.

2. The integer z = 4 is not prime & composite:

Not prime: for example 4 | (6 · 10) but 4 ∤6 and 4 ∤10.

Composite: the positive divisors are 1, 2 and 4.

The distinction between primes and irreducibles is partly artificial: the uniqueness proof of the Fun-
damental Theorem will be seen to hinge on the fact that primes and irreducibles are identical! After this
section, prime will refer to any positive integer satisfying both of the prime/irreducible conditions in
Definition 2.17. In abstract algebra however, the distinction is far more important: there exist many
rings where primes and irreducibles are genuinely different objects.2

2In a later class, our approach in this section will be seen to generalize to other rings in which primes and irreducibles
are identical; in such cases an analogue of the unique factorization theorem can often be produced. This isn’t a universal,
for in some rings the concepts are distinct and there might exist non-unique factorizations. For those with some experience:
all four of 2, 3,

√
10 ± 2 are irreducible in the ring Z[

√
10], and we have a non-unique irreducible factorization

6 = 2 · 3 = (
√

10 − 2)(
√

10 + 2)

In this ring, 2 is irreducible but not prime: good luck showing this at the moment!
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Existence: Irreducibiles and Composites

The first stage of proving the Fundamental Theorem is to factor every positive integer by irreducibles.

Lemma 2.19. Every composite is divisible by an irreducible.

Proof. Suppose z ≥ 2 is composite but has no irreducible factors. Then:

• z = a1b1 where a1, b1 ≥ 2 are not irreducible: plainly a1, b1 are composites.

• If a1 had an irreducible factor then this would be an irreducible factor of z. Hence a1 is compos-
ite and may be written a1 = a2b2 for a2, b2 ≥ 2 composite.

• Repeat the process ad infinitum:

z = a1b1 = a2b2b1 = a3b3b2b1 = · · ·

Since each bn ≥ 2 we see that (a1, a2, a3, a4, . . .) is a decreasing sequence of positive integers:
contradiction.

We can now prove a famous result dating at least back to Euclid (300 BC).

Theorem 2.20. There are infinitely many irreducibles.

Proof. Suppose that p1, . . . , pn constitutes all irreducibles and consider P := p1 · · · pn + 1. By Lemma
2.19, P has an irreducible factor p which, by assumption, is one of our irreducibles pi. But then

p |P and p | p1 · · · pn =⇒ p |1

which contradicts the fact that p ≥ 2.

We also quickly obtain the existence part of the Fundamental Theorem.

Theorem 2.21. Every integer z ≥ 2 is a product of irreducibles.

Proof. This is merely an iteration of Lemma 2.19.

• If z is irreducible, we are done.

• Otherwise, z = p1a1 where p1 is irreducible and a1 ∈ N. If a1 is irreducible, we are done.

• Otherwise, z = p1 p2a2 where p2 is irreducible and a2 ∈ N. If a2 is irreducible, we are done.

• Continue until the process terminates and we obtain the factorization z = p1 p2 · · · pn.

If the process never terminated, then (z, a1, a2, . . .) would be a sequence of decreasing positive inte-
gers; a contradiction.

Nothing in the Theorem assists us in computing a suitable factorization. The best approach for small
integers is simply to hack at it. For large numbers, factorization is a very hard (i.e. slow) problem.
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Uniqueness: Primes and Irreducibles are Identical

The existence part of the Fundamental Theorem is really a claim about irreducibles. We’ve said noth-
ing yet about primes.

Lemma 2.22. In the integers, primes and irreducibles are identical.

Proof. 1. (Every prime is irreducible) Suppose p is prime and that p = kl where k, l ∈ N: our
goal is to prove that {k, l} = {1, p}.

Since p is prime, we have p | k or p | l. WLOG suppose the former: k = pα for some α ∈ Z. But
then

p = pαl =⇒ αl = 1

Since we are working in the integers and l > 0, it follows that kl = α = 1 and k = p.

2. (Every irreducible is prime) Suppose z is irreducible and that z | ab where a, b ∈ Z: our goal is
to prove that z | a or z |b.

Let d = gcd(a, z). Since z is irreducible, there are only two possibilities:

• d = 1: in this case gcd(a, z) = 1 and z | ab implies (Corollary 2.10) that z |b.
• d = z: in this case z | a.

The first argument used much less technology than the second, which depended crucially on Bézout’s
identity and the Euclidean algorithm.3

The equivalence of irreducibles and primes yields the uniqueness part of the Fundamental Theorem.

Proof of Theorem 2.16. We can factor z into irreducibles by Theorem 2.21. Now suppose we have two
distinct such factorizations

z = pµ1
1 · · · pµn

n = qν1
1 · · · qνm

m

Since the factorizations are distinct, at least some terms remain after dividing both sides by all com-
mon irreducible factors:

pα1
n1
· · · pαt

nk
= qβ1

m1 · · · qβl
ml

where {pn1 , . . . , pnk} and {qm1 , . . . , qml} are distinct sets of irreducibles and all αi, β j ∈ N.
Plainly the irreducible pn1 divides the right hand side. Since pn1 is also prime (Lemma 2.22) we see that
it divides at least one of the irreducibles qm1 , . . . , qml . This is a contradiction.

3For algebra experts, part 1 really only requires that we’re working in an integral domain:

p = pαl =⇒ p(1 − αl) = 0 =⇒ αl = 1

since an integral domain has no zero divisors. The fact that every prime is irreducible is thus highly generalizable. By
contrast, the existence of a Bézout-type identity or a Euclidean algorithm is very rare in a general ring. The fact that every
irreducible is prime is special to the integers and to relatively few other rings.
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Simple Consequences of the Fundamental Theorem

Now that we have unique factorization, several ‘obvious’ things are seen to be true.

Corollary 2.23. Suppose a = pµ1
1 · · · pµn

n and b = pν1
1 · · · pνn

n are written in terms of their unique
factorizations.a Then:

1. b | a ⇐⇒ νi ≤ µi for all i. Essentially, all primes in b must also be in a.

2. gcd(a, b) = pmin(µ1,λ1)
1 · · · pmin(µn,λn)

n .

3. a is a perfect square if and only if every µi is even (consider a = b2 then µi = 2νi).

4. a2 |b2 =⇒ a |b.

5. If ab is a perfect square and gcd(a, b) = 1, then both a and b are perfect squares.

aSome exponents may need to be zero in order to have the same lists of primes.

The last two statements were used in our discussion of Pythagorean triples.

Definition 2.24. The least common multiple lcm(a, b) of two positive integers a, b is the smallest
positive integer divisible by both a and b.

Following the notation in the Corollary,

a = pµ1
1 · · · pµn

n
b = pν1

1 · · · pνn
n

}
=⇒ lcm(a, b) = pmax(µ1,ν1)

1 · · · pmax(µn,νn)
n

=⇒ lcm(a, b) · gcd(a, b) = ab

This last follows since max(µi, λi) + min(µi, λi) = µi + λi

Warning: this formula does not hold for gcd’s or lcm’s of three or more integers.

Examples 2.25. 1. To find lcm(110, 154), there are three obvious approaches:

(a) Brute force: list several small multiples of each and look for the smallest. This is no fun.
(b) Prime factorizations: if we know that 110 = 2 · 5 · 11 and 154 = 2 · 7 · 11, then

lcm(110, 154) = 2 · 5 · 7 · 11 = 770

(c) Use the Euclidean algorithm:

154 = 1 · 110 + 44
110 = 2 · 44 + 22
44 = 2 · 22

 =⇒ gcd(110, 154) = 22

=⇒ lcm(110, 154) =
110 · 154

22
= 770

2. To find lcm(4, 6, 10), we use the prime factorizations:

lcm(4, 6, 10) = lcm(22, 2 · 3, 2 · 5) = 22 · 3 · 5 = 60

Note that

60 = lcm(4, 6, 10) ̸= 4 · 6 · 10
gcd(4, 6, 10)

=
240
2

= 120
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Exercises 2.2 1. Evaluate the following by finding unique prime factorizations: use a calculator!

(a) lcm(845, 8788)

(b) lcm(825, 495)

(c) lcm(2310, 1870)

(d) lcm(198061, 231896)

2. Suppose that gcd(a, b) = 1 and let c be an integer.

(a) Use the prime factorizations of a, b and c to prove the following.

i. a |bc =⇒ a | c (this is a cheat, since we used it to prove prime factorization!)
ii. If a | c and b | c, then ab | c

iii. gcd(ab, c) = gcd(a, c) gcd(b, c)
(It follows that gcd(ab, c) = 1 ⇐⇒ gcd(a, c) = 1 = gcd(b, c) whenever a, b are coprime)

(b) We proved part (a)(i) in Corollary 2.10 using Bézout’s identity. Can you prove (ii) and (iii)
similarly; i.e. without using unique factorization? (Warning: (iii) is especially difficult!)

3. Use Exercise 2 part (a)(iii) to prove that, for all x, y ∈ Z we have

gcd(ab, ay + bx) = gcd(a, x) gcd(b, y)

4. Suppose a, b, c are all non-zero. Prove or disprove:

(a) gcd(a, b) = gcd(a, c) =⇒ gcd(a2, b2) = gcd(a2, c2)

(b) gcd(a, b) = gcd(a, c) =⇒ gcd(a, b) = gcd(a, b, c)

(c) If p | (a2 + b2) and p | (b2 + c2), then p | (a2 + c2).

5. The square-free numbers are those integers k which are not divisible by the square of any prime
(e.g. 1, 2, 3, 5, 6, 7, 10, 11, 13, . . .). Prove that every integer ≥ 2 is uniquely the product of a square
and a square-free number.

6. Recall that gcd(a, b) · lcm(a, b) = ab for positive integers a, b.

(a) In Example 2.25 we saw that the same formula does not necessarily hold when applied to
three integers a, b, c. Find another such counter-example.

(b) Is it ever true that gcd(a, b, c) · lcm(a, b, c) = abc for positive integers a, b, c? In general is
the LHS less than or greater than abc? Make a hypothesis and try to prove it.

7. Suppose that g, m are positive integers. Prove that g | m if and only if there exist integers a, b
such that gcd(a, b) = g and lcm(a, b) = m.
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