3 Congruences and Congruence Equations

A great many problems in number theory rely only on remainders when dividing by an integer. Recall the division algorithm: given $a \in \mathbb{Z}$ and $n \in \mathbb{N}$ there exist unique $q, r \in \mathbb{Z}$ such that

$$
\begin{equation*}
a=q n+r, \quad 0 \leq r<n \tag{*}
\end{equation*}
$$

It is to the remainder r that we now turn our attention.

3.1 Congruences and \mathbb{Z}_{n}

Definition 3.1. For each $n \in \mathbb{N}$, the set $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ comprises the residues modulo n. Integers a, b are said to be congruent modulo n if they have the same residue: we write $a \equiv b(\bmod n)$.

The division algorithm says that every integer $a \in \mathbb{Z}$ has a unique residue $r \in \mathbb{Z}_{n}$.
Example 3.2. We may write $7 \equiv-3(\bmod 5)$, since applying the division algorithm yields

$$
7=5 \times 1+2 \quad \text { and } \quad-3=5 \times(-1)+2
$$

Indeed both 7 and 12 have residue 2 modulo 5 .
As another example, we prove a very simple result.
Lemma 3.3. All squares of integers have remainders 0 or 1 upon dividing by 3 .

Proof. Since every integer x has remainder 0,1 or 2 upon division by 3 , we have three mutually exclusive cases to check:

- $x \equiv 0(\bmod 3) \quad$ Write $x=3 y$ for some integer y. But then

$$
x^{2}=9 y^{2}=3\left(3 y^{2}\right) \equiv 0 \quad(\bmod 3)
$$

- $x \equiv 1(\bmod 3) \quad$ This time $x=3 y+1$ for some integer y, and

$$
x^{2}=9 y^{2}+6 y+1=3\left(3 y^{2}+2 y\right)+1 \equiv 1 \quad(\bmod 3)
$$

- $x \equiv 2(\bmod 3) \quad$ Finally $x=3 y+2$ yields

$$
x^{2}=9 y^{2}+12 y+4=3\left(3 y^{2}+4 y+1\right)+1 \equiv 1 \quad(\bmod 3)
$$

A perfect square therefore never has remainder 2.
This is very tedious notation. We'd far prefer to compute directly with remainders. Once we've developed such, we'll return to the Lemma to see how the proof improves. To start this process, we observe that there is an easier way to check whether two integers are congruent modulo n.

Theorem 3.4. $\quad a \equiv b(\bmod n) \Longleftrightarrow n \mid(a-b)$

Proof. Suppose that $a=q_{1} n+r_{1}$ and $b=q_{2} n+r_{2}$ are the results of applying the division algorithm to a, b modulo n. Plainly $a \equiv b(\bmod n) \Longleftrightarrow r_{1}=r_{2}$. We prove each direction separately:
(\Rightarrow) This is almost immediate:

$$
r_{1}=r_{2} \Longrightarrow a-n q_{1}=b-n q_{2} \Longrightarrow a-b=n\left(q_{2}-q_{1}\right)
$$

Since $q_{2}-q_{1}$ is an integer, $a-b$ is a multiple of n.
$(\Leftarrow) \quad$ Conversely, suppose that $a-b=k n$ is a multiple of n. Then

$$
r_{1}-r_{2}=\left(a-n q_{1}\right)-\left(b-n q_{2}\right)=(a-b)+n\left(q_{2}-q_{1}\right)=n\left(k+q_{2}-q_{2}\right)
$$

This says that $r_{1}-r_{2}$ is an integer multiple of n. Recalling the proof of the division algorithm, $-n<r_{1}-r_{2}<n$ forces $r_{1}-r_{2}=0$.

The Theorem says that we can compare remainders without computing quotients. In case the advantage isn't clear, we recall our earlier example.

Example 3.2 revisited). $7 \equiv-3(\bmod 5)$ follows since $7-(-3)=10$ is divisible by 5 . There is no need for us to express 7 and -3 using the division algorithm.

Our next goal is to define an arithmetic with remainders, again without calculating quotients.
Example 3.5. If $x \equiv 3$ and $y \equiv 5(\bmod 7)$, then there exist integers k, l such that $x=7 k+3$ and $y=7 l+5$. But then

$$
x y=7(7 k l+5 k+3 l)+15=7(7 k l+5 k+3 l+2)+1 \Longrightarrow x y \equiv 1 \quad(\bmod 7)
$$

It would be so much simpler if we could write

$$
x \equiv 3, y \equiv 5 \Longrightarrow x y \equiv 3 \cdot 5 \equiv 15 \equiv 1 \quad(\bmod 7)
$$

Thankfully the next result justifies the crucial step.

Theorem 3.6 (Modular Arithmetic). Suppose that $x \equiv a$ and $y \equiv b(\bmod n)$. Then

1. $x \pm y \equiv a \pm b(\bmod n)$
2. $x y \equiv a b(\bmod n)$
3. For any $m \in \mathbb{N}, x^{m} \equiv a^{m}(\bmod n)$

Proof. We just prove 2: part 1 is similar, and part 3 is by induction using part 2 as the induction step. By Theorem 3.4, there exist integers k, l such that $x=k n+a$ and $y=\ln +b$. But then

$$
x y=(k n+a)(l n+b)=n(k l n+a l+b k)+a b \Longrightarrow x y \equiv a b \quad(\bmod n)
$$

Examples 3.7. We can now easily compute remainders of complex arithmetic objects.

1. What is the remainder when 17^{113} is divided by 3 ?

Don't bother asking your calculator: 17^{113} is 139 digits long! Instead we use modular arithmetic:

$$
\begin{array}{rlr}
17 \equiv-1 \quad(\bmod 3) \Longrightarrow 17^{113} & \equiv(-1)^{113} & \text { (Theorem } 3.6 \text { part } 3 .) \\
& \equiv-1 \quad(\bmod 3) & \text { (since } 113 \text { is odd) }
\end{array}
$$

Since $-1 \equiv 2$, we conclude that 17^{113} has remainder 2 when divided by 3 .
2. Similarly, calculating remainders modulo 10 yields

$$
219^{45}-43^{12} \equiv(-1)^{45}-3^{12} \equiv-1-9^{6} \equiv-1-(-1)^{6} \equiv-1-1 \equiv-2 \equiv 8 \quad(\bmod 10)
$$

3. We find the remainder when 4^{49} is divided by 67 . Even with the assistance of a powerful calculator, evaluating

$$
4^{49}=316,912,650,057,057,350,374,175,801,344
$$

doesn't help us! Instead we first search for a power of 4 which is small modulo 67: the obvious choice is $4^{3}=64$.

$$
4^{49} \equiv 4 \cdot\left(4^{3}\right)^{16} \equiv 4 \cdot(-3)^{16} \equiv 4 \cdot 3^{16} \quad(\bmod 67)
$$

Next we search for a power of 3 which is small: since $3^{4}=81 \equiv 14(\bmod 67)$ we obtain

$$
4^{49} \equiv 4 \cdot\left(3^{4}\right)^{4} \equiv 4 \cdot 14^{4} \quad(\bmod 67)
$$

Now observe that $14^{2}=196 \equiv-5(\bmod 67)$ and we are almost finished:

$$
4^{49} \equiv 4 \cdot(-5)^{2} \equiv 4 \cdot 25 \equiv 100 \equiv 33 \quad(\bmod 67)
$$

Now that we have some better notation, here is a much faster proof of Lemma 3.3.
Proof. Modulo 3 we have:

$$
0^{2} \equiv 0, \quad 1^{2} \equiv 1, \quad 2^{2} \equiv 4 \equiv 1
$$

Hence squares can only have remainders 0 or 1 modulo 3 .
As an application, we can easily show that in a primitive Pythagorean triple (a, b, c) exactly one of a or b is a multiple of three. Just think about the remainders modulo 3:

$$
a^{2}+b^{2} \equiv c^{2} \quad(\bmod 3)
$$

The only possibilities are $0+0 \equiv 0,0+1 \equiv 1$ and $1+0 \equiv 1$, however the first says that all three of a, b, c are divisible by three which results in a non-primitive triple.
Similar games can be played with other primes.

Congruence and Division By Theorem3.6, we may add, subtract, multiply and take positive integer powers of remainders without issue. Division is another matter entirely: it simply does not work in the usual sense.

Example 3.8. \quad Since $54-30=24$ is divisible by 8 , we see that $54 \equiv 30(\bmod 8)$. We'd like to divide both sides this congruence by 6 , however

$$
6 \times 9 \equiv 6 \times 5 \quad(\bmod 8) \nRightarrow 9 \equiv 5 \quad(\bmod 8)
$$

since the right hand side is false. What can we try instead? Instead we follow the definition:

$$
6 \times 9 \equiv 6 \times 5 \quad(\bmod 8) \Longrightarrow 6 \times 9=6 \times 5+8 m \text { for some }^{1} m \in \mathbb{Z}
$$

We can't automatically divide this by 6 , but we can certainly divide through by 2 :

$$
3 \times 9=3 \times 5+4 m \Longrightarrow 3|4 m \Longrightarrow 3| m \Longrightarrow m=3 l \text { for some } l \in \mathbb{Z}
$$

We may now divide by 3 to correctly conclude

$$
9=5+4 l \Longrightarrow 9 \equiv 5 \quad(\bmod 4)
$$

It appears that we were able to divide our original congruence by 6 , but at the cost of dividing the modulus by 2 : it just so happens that $2=\operatorname{gcd}(6,8) \ldots$

Theorem 3.9. If $k \neq 0$ and $\operatorname{gcd}(k, n)=d$, then

$$
k a \equiv k b \quad(\bmod n) \Longrightarrow a \equiv b \quad\left(\bmod \frac{n}{d}\right)
$$

Proof. $\operatorname{gcd}(k, n)=d \Longrightarrow \operatorname{gcd}\left(\frac{k}{d}, \frac{n}{d}\right)=1$ so that $\frac{n}{d}$ and $\frac{k}{d}$ are coprime integers. Appealing to a corollary ${ }^{2}$ of Bézout's identity, we see that

$$
\left.k a \equiv k b \Longrightarrow n\left|(k a-k b) \Longrightarrow \frac{n}{d}\right| \frac{k}{d}(a-b) \Longrightarrow \frac{n}{d} \right\rvert\,(a-b)
$$

Otherwise said $a \equiv b\left(\bmod \frac{n}{d}\right)$.

Examples 3.10. 1. We divide by 4 in the congruence $12 \equiv 28(\bmod 8)$. Since $\operatorname{gcd}(4,8)=4$ we also divide the modulus by 4 to obtain

$$
12 \equiv 28 \quad(\bmod 8) \Longrightarrow 3 \equiv 7 \quad(\bmod 2)
$$

2. We divide by 12 in the congruence $12 \equiv 72(\bmod 30)$. Since $\operatorname{gcd}(12,30)=6$, we conclude that

$$
12 \equiv 72 \quad(\bmod 30) \Longrightarrow 1 \equiv 6 \quad(\bmod 5)
$$

[^0]Division in the ring \mathbb{Z}_{n} The development of modular arithmetic (Theorem 3.6) shows that the set of residues $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ modulo n has the algebraic structure of a ring $\left.\right|^{3}$ The interesting question for us is when one can divide.
Recall in the real numbers that to divide by x means that we multiply by some element x^{-1} satisfying $x x^{-1}=1$: plainly this is possible provided $x \neq 0$. The same idea holds in \mathbb{Z}_{n}.

Definition 3.11. Let $x \in \mathbb{Z}_{n}$. We say that $y \in \mathbb{Z}_{n}$ is the inverse of x if $x y \equiv y x \equiv 1(\bmod n)$.
An element x is a unit if it has an inverse. A ring is a field if every non-zero element is a unit.

Example 3.12. By considering the multiplication tables for \mathbb{Z}_{5} and \mathbb{Z}_{6}, we can easily identify the units and their inverses:

\mathbb{Z}_{5}	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

\mathbb{Z}_{6}	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

There are plainly only two units in \mathbb{Z}_{6}, namely 1 and 5 . Moreover, each is its own inverse

$$
1 \cdot 1 \equiv 1, \quad 5 \cdot 5 \equiv 1 \quad(\bmod 6)
$$

Modulo 5, however, every non-zero residue is a unit:

$$
1 \cdot 1 \equiv 1, \quad 2 \cdot 3 \equiv 3 \cdot 2 \equiv 1, \quad 4 \cdot 4 \equiv 1 \quad(\bmod 5)
$$

In the example, the units have a simple property in common.
Theorem 3.13. $x \in \mathbb{Z}_{n}$ is a unit $\Longleftrightarrow \operatorname{gcd}(x, n)=1$.
Moreover, every non-zero $x \in \mathbb{Z}_{n}$ is a unit (thus \mathbb{Z}_{n} is a field) if and only if $n=p$ is prime.

Proof. (\Rightarrow) If $x y \equiv 1(\bmod n)$, then $x y-\lambda n=1$ for some $\lambda \in \mathbb{Z}$. Plainly any common factor of x and n divides 1 , whence $\operatorname{gcd}(x, n)=1$.
$(\Leftarrow) \quad$ By Bézout's identity, $\exists \lambda, y \in \mathbb{Z}$ such that

$$
x y+n \lambda=1 \Longrightarrow x y \equiv 1 \quad(\bmod n)
$$

Plainly every non-zero x is a unit if and only if $\operatorname{gcd}(x, n)=1$ for all $x \in\{1, \ldots, n-1\}$. This is if and only if n has no divisors except itself and 1: i.e. n is prime.

This result gels with Theorem 3.9 , we can divide a congruence by k while remaining in \mathbb{Z}_{n} precisely when $d=\operatorname{gcd}(k, n)=1$. Moreover, the proof tells us how to compute inverses: use Bézout!

[^1]Example 3.14. Find the inverse of $15 \in \mathbb{Z}_{26}$.
First observe that $\operatorname{gcd}(15,26)=1$, so an inverse exists. Now apply the Euclidean algorithm and Bézout's identity:

$$
\begin{array}{ll}
\mathbf{2 6}=1 \cdot \mathbf{1 5}+\mathbf{1 1} \quad \Longrightarrow \operatorname{gcd}(26,15)=\mathbf{1} & =\mathbf{4}-\mathbf{3}=\mathbf{4}-(\mathbf{1 1}-2 \cdot \mathbf{4}) \\
\mathbf{1 5}=1 \cdot \mathbf{1 1}+\mathbf{4} & \\
\mathbf{1 1}=2 \cdot \mathbf{4}+\mathbf{3} & \\
\mathbf{4}=1 \cdot \mathbf{4}+\mathbf{1}-\mathbf{1 1}=3(\mathbf{1 5}-\mathbf{1 1})-\mathbf{1 1} \\
\mathbf{4} & \\
& =7 \cdot \mathbf{1 5}-4 \cdot \mathbf{1 1}=3 \cdot \mathbf{1 5}-\mathbf{2 6}(\mathbf{2 6}-\mathbf{1 5})
\end{array}
$$

from which we see that $15 \cdot 7 \equiv 1(\bmod 26)$: the inverse of 15 is therefore 7 .
Exercises 3.1 1. Find the residues (remainders) of the following expressions:
(a) $6^{4}-38 \cdot 48(\bmod 5)$
(b) $117^{32}+118^{31}(\bmod 7)$
(c) $3510^{1340}-2709^{4444}(\bmod 24)$
2. Suppose that $d \mid m$. Show that if $a \equiv b\left(\bmod \frac{m}{d}\right)$, then

$$
a \equiv b, \quad \text { or } \quad b+\frac{m}{d}, \quad \text { or } \quad \cdots, \quad \text { or } \quad b+(d-1) \frac{m}{d} \quad(\bmod m)
$$

3. Show that a positive integer is divisible by 3 if and only if the sum of its digits is divisible by 3 .
(Hint: for example $471=4 \cdot 100+7 \cdot 10+1 \ldots$)
4. Suppose $z \in \mathbb{N}$ and that $z \equiv 3(\bmod 4)$. Prove that at least one of the primes p dividing z must be congruent to 3 modulo 4 .
5. (a) State the units in the ring \mathbb{Z}_{48}.
(b) Find the inverse of 11 modulo 48.
(c) If $11 x \equiv 2(\bmod 48)$ for some $x \in \mathbb{Z}_{48}$, find x.
6. Prove that inverses are unique: if y, z are inverses of $x \in \mathbb{Z}_{n}$, then $y \equiv z(\bmod n)$.
7. A non-zero element $x \in \mathbb{Z}_{n}$ is a zero divisor if $\exists y \in \mathbb{Z}_{n}$ such that $x y \equiv 0(\bmod n)$. Prove that \mathbb{Z}_{n} has zero divisors if and only if n is composite.
8. Suppose p is prime and $a \not \equiv 0$. Prove that the remainders $0, a, 2 a, 3 a, \ldots,(p-1) a$ are distinct modulo p, and thus constitute all of \mathbb{Z}_{p}.
9. Suppose r and s are odd. Prove the following:
(a) $\frac{r s-1}{2} \equiv \frac{r-1}{2}+\frac{s-1}{2}(\bmod 2)$
(b) $r^{2} \equiv s^{2} \equiv 1(\bmod 8)$
(c) $\frac{(r s)^{2}-1}{8} \equiv \frac{r^{2}-1}{8}+\frac{s^{2}-1}{8}(\bmod 8)$
10. Prove that $\left(k^{k}\right)$ is periodic modulo 3 and find its period.
(Hint: First try to spot a pattern...)

3.2 Congruence Equations and Lagrange's Theorem

In this section we consider polynomial congruence equations $p(x) \equiv 0(\bmod m)$. The simplest type are linear: in fact we know how to solve these already.

$$
\exists x \in \mathbb{Z} \text { s.t. } a x \equiv c(\bmod m) \Longleftrightarrow \exists x, y \in \mathbb{Z} \text { s.t. } a x+m y=c
$$

This last is a linear Diophantine equation; we need only rephrase our work from earlier.
Theorem 3.15. Let $d=\operatorname{gcd}(a, m)$. The equation $a x \equiv c(\bmod m)$ has a solution iff $d \mid c$. If x_{0} is a solution, then all solutions are given by

$$
x=x_{0}+k \frac{m}{d}: k \in \mathbb{Z}
$$

Moreover, modulo m, there are exactly d solutions, namely
$x_{0}, x_{0}+\frac{m}{d}, x_{0}+\frac{2 m}{d}, \ldots, x_{0}+\frac{(d-1) m}{d}$

Examples 3.16. 1. We solve the congruence equation $15 x=4(\bmod 133)$.
By the Euclidean algorithm/Bézout, we see that

$$
\begin{aligned}
\mathbf{1 3 3}=8 \cdot \mathbf{1 5}+\mathbf{1 3} \Longrightarrow d=\operatorname{gcd}(15,133)=\mathbf{1} & =\mathbf{1 3}-6 \cdot \mathbf{2}=\mathbf{1 3}-6(\mathbf{1 5}-\mathbf{1 3}) \\
\mathbf{1 5}=1 \cdot \mathbf{1 3}+\mathbf{2} & \\
& =7 \cdot \mathbf{1 3}-6 \cdot \mathbf{1 5} \\
\mathbf{1 3}=6 \cdot \mathbf{2}+\mathbf{1} & =7(\mathbf{1 3 3}-8 \cdot \mathbf{1 5})-6 \cdot \mathbf{1 5} \\
& =7 \cdot \mathbf{1 3 3}-62 \cdot \mathbf{1 5}
\end{aligned}
$$

Since $d=1$ and $d \mid 4$, there is exactly one solution. Moreover, modulo 133, we see that

$$
15 \cdot(-62) \equiv 1 \Longrightarrow 15 \cdot(-248) \equiv 15 \cdot 18 \equiv 4 \quad(\bmod 133)
$$

whence $x_{0}=18$ is the unique solution ${ }^{a}$
2. We solve the linear congruence $1288 x \equiv 21(\bmod 1575)$.

Assume we have applied the Euclidean algorithm and Bézout's identity to obtain

$$
d=\operatorname{gcd}(1575,1288)=7=1575 \cdot 9-1288 \cdot 11
$$

Since $7 \mid 21$, there are precisely seven solutions. Indeed

$$
7 \equiv 1288(-11) \quad(\bmod 1575) \Longrightarrow x=-33 \equiv 1542 \quad(\bmod 1575)
$$

Moreover, $\frac{m}{d}=\frac{1575}{7}=225$, whence all solutions are

$$
\{x \equiv-33+225 k: k=0, \ldots, 6\}=\{192,417,642,867,1092,1317,1542\}
$$

[^2]Higher degree congruences While we were able to give a complete description of the solutions to a linear congruence, for higher order polynomials, things quickly become very messy. We start with a simple example of a quadratic congruence which can easily be solved by inspection.

Example 3.17. Consider the quadratic equation $x^{2}+3 x \equiv 0(\bmod 10)$. One can easily check by plugging in the remainders $0, \ldots, 9$ that the solutions to this equation are

$$
x \equiv 0,2,5,7 \quad(\bmod 10)
$$

This is perhaps surprising, since we are used to quadratic equations having at most two solutions.
Now consider the same equation modulo the prime divisors of 10 . Since $10|d \Longleftrightarrow 2| d$ and $5 \mid d$, we see that

$$
x^{2}+3 x \equiv 0 \quad(\bmod 10) \Longleftrightarrow \begin{cases}x^{2}+3 x \equiv 0 & (\bmod 2) \\ x^{2}+3 x \equiv 0 & (\bmod 5)\end{cases}
$$

By substituting values for x, we easily check that sanity is restored: each congruence now has two solutions!

$$
\begin{aligned}
& x^{2}+3 x \equiv 0 \quad(\bmod 2) \Longleftrightarrow x \equiv 0,1 \quad(\bmod 2) \\
& x^{2}+3 x \equiv 0 \quad(\bmod 5) \Longleftrightarrow x \equiv 0,2 \quad(\bmod 5)
\end{aligned}
$$

We can even factorize in the familiar manner:

$$
\begin{aligned}
& x^{2}+3 x \equiv x^{2}-x \equiv x(x-1) \quad(\bmod 2) \\
& x^{2}+3 x \equiv x^{2}-2 x \equiv x(x-2) \quad(\bmod 5)
\end{aligned}
$$

Modulo 10, however, we have two distinct factorizations:

$$
x^{2}+3 x \equiv x(x-7) \equiv(x-2)(x-5) \quad(\bmod 10)
$$

For general polynomial congruences, the same sort of thing is true. The number of solutions and types of factorizations are more predictable when the modulus is prime.

Theorem 3.18 (Lagrange). Let p be prime and $f(x)$ a polynomial with integer coefficients and degree n modulo p. Then $f(x) \equiv 0(\bmod p)$ has at most n distinct roots.

Lagrange's Theorem is useless for congruences such as $x^{39}+25 x^{2}+1 \equiv 0(\bmod 17)$: since there are only 17 distinct values of x to try, the congruence has a maximum of 17 solutions, not 39 .
Before proving Lagrange's Theorem, we need one additional ingredient.
Lemma 3.19 (Factor Theorem in $\mathbb{Z}[x]$). Suppose $f(x)$ is a polynomial with integer coefficients and that $c \in \mathbb{Z}$. Then there exists a unique polynomial $q(x)$, also with integer coefficients, such that

$$
f(x)=(x-c) q(x)+f(c)
$$

Moreover, $f(c)=0$ if and only if $(x-c)$ is a factor of $f(x)$. This is also true modulo any n.

Proof. Suppose $f(x)=a_{n} x^{n}+\cdots+a_{0}$ is given. Since $x-c$ is linear, we require $\operatorname{deg} q=n-1$. Write $q(x)=q_{n-1} x^{n-1}+\cdots+q_{0}$, let r be constant, and consider

$$
\begin{aligned}
a_{n} x^{n}+\cdots+a_{0} & =(x-c)\left(q_{n-1} x^{n-1}+\cdots+q_{1} x+q_{0}\right)+r \\
& =q_{n-1} x^{n}+\left(q_{n-2}-c q_{n-1}\right) x^{n-1}+\cdots+\left(q_{0}-c q_{1}\right) x+r-c q_{0}
\end{aligned}
$$

Equating the coefficients of $1, x, x^{2}, \ldots, x^{n}$ yields the $(n+1) \times(n+1)$ linear algebra problem

$$
\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
\vdots \\
a_{n-1} \\
a_{n}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & -c & 0 & & 0 \\
0 & 1 & -c \\
0 & 0 & 1 & & 0 \\
0 & 0 & 0 \\
& & \ddots & \ddots & \\
0 & 0 & 0 & & 1 \\
0 & 0 & 0 & & 0
\end{array}\right)\left(\begin{array}{c}
r \\
q_{0} \\
q_{1} \\
\vdots \\
q_{n-2} \\
q_{n-1}
\end{array}\right) \Longrightarrow\left(\begin{array}{cc}
r \\
q_{0} \\
q_{1} \\
\vdots \\
q_{n-2} \\
q_{n-1}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & c & c^{2} & c^{n-2} \\
0 & 1 & c & c^{n-1} \\
0 & 0 & c^{n-1} \\
& 1 & c^{n-2} \\
& & c^{n-4} & c^{n-3} \\
0 & 0 & \ddots & \\
0 & 0 & 0 & & 1 \\
0 & c & c
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{n-1} \\
a_{n}
\end{array}\right)
$$

Since the inverse matrix has integer coefficients, it follows that each q_{j} and r are uniquely defined integers. Finally, since $f(x)=(x-c) q(x)+r$, evaluation at $x=c$ yields $r=f(c)$.

We are now ready to prove Lagrange: let us first reiterate the crucial observation from the Factor Theorem: for any n,

$$
f(c) \equiv 0(\bmod n) \Longleftrightarrow \exists q(x) \text { such that } f(x) \equiv(x-c) q(x)(\bmod n)
$$

Proof of Lagrange. Suppose $f(x)=a_{n} x^{n}+\cdots$ is a polynomial with integer coefficients and degree n modulo p : that is, $p \nmid a_{n}$. Moreover, assume that $f\left(c_{1}\right) \equiv 0(\bmod p)$. By the factor theorem, there exists a unique polynomial $q_{1}(x)$ with integer coefficients, such that

$$
f(x)=\left(x-c_{1}\right) q_{1}(x)+f\left(c_{1}\right) \equiv\left(x-c_{1}\right) q_{1}(x) \quad(\bmod p)
$$

Plainly $q_{1}(x)=a_{n} x^{n-1}+\cdots$ has degree $n-1$ modulo p. If $c_{2} \not \equiv c_{1}$ is another root modulo p, then

$$
0 \equiv f\left(c_{2}\right) \equiv\left(c_{2}-c_{1}\right) q_{1}\left(c_{2}\right) \Longrightarrow q_{1}\left(c_{2}\right) \equiv 0 \quad(\bmod p)
$$

The last step is where we need p to be prime $\int_{4}^{4} W e$ may therefore factor out $\left(x-c_{2}\right)$ from $q_{1}(x)$ modulo p, and thus from $f(x)$. Repeating the process, if there are n distinct roots, then $f(x)$ factorizes as

$$
f(x) \equiv\left(x-c_{1}\right) \cdots\left(x-c_{n}\right) q_{n}(x) \quad(\bmod p)
$$

where $q_{n}(x)$ has degree $n-n=0$: it is necessarily the constant a_{n}. Finally, if $\xi \not \equiv c_{i}$ for any i, then

$$
f(\xi) \equiv a_{n}\left(\xi-c_{1}\right) \cdots\left(\xi-c_{n}\right) \not \equiv 0 \quad(\bmod p)
$$

since there are no zero divisors in \mathbb{Z}_{p}. We conclude that $f(x) \equiv 0$ has no further roots modulo p.
In fact the ring of polynomials with coefficients in \mathbb{Z}_{p} has a Euclidean algorithm which can be used to prove a unique factorization theorem: there is only one way to factorize a polynomial modulo p. We won't prove it, but you are welcome to use the fact nonetheless.

[^3]Examples 3.20. 1. By testing the values ${ }^{5} x \equiv 0,1,-1(\bmod 7)$, we see that

$$
f(x) \equiv x^{3}-x \quad(\bmod 7)
$$

has these distinct solutions. By Lagrange, it has no other solutions. Indeed this example factorizes very easily

$$
f(x) \equiv x(x-1)(x+1)
$$

2. Lagrange only says that there are at most n solutions modulo p. It is straightforward to check (let $x=0,1 \ldots$) that the polynomial $f(x) \equiv x^{2}+x+1(\bmod 2)$ has no solutions.
3. Factorize $f(x)=x^{3}+2 x^{2}+4 x+3$ over \mathbb{Z}_{5}.

By inspection we see that $x \equiv \pm 1,-2$ are solutions. By Lagrange's Theorem these are the only solutions and we can factorize

$$
f(x) \equiv(x-1)(x+1)(x+2) \quad(\bmod 5)
$$

We know that the factorization is unique and there are no other solutions, but it is worth seeing it played out in stages.

$$
\begin{array}{rlrl}
f(x) & \equiv x^{3}+2 x^{2}+4 x+3 \equiv(x-1)\left(x^{2}+3 x+7\right) & & (\text { spot } x \equiv 1 \text { and factorize) } \\
& \equiv(x-1)\left(x^{2}+3 x+2\right) & (\text { simplify }) \\
& \equiv(x-1)(x+1)(x+2) & (\text { spot } x \equiv-1 \text { and factorize) }
\end{array}
$$

Aside: How to factorize? If you have trouble factorizing the previous example, here is a simple algorithm. Since $f(1) \equiv 0$, we know that $f(x) \equiv(x-1) q(x)$ for some quadratic $q(x)$.

1. Since we need an x^{3} term, the first coefficient of $q(x)$ is plainly x^{2} :

$$
x^{3}+2 x^{2}+4 x+3 \equiv(x-1)\left(x^{2}+\cdots\right)
$$

2. We now have $-x^{2}$ on the right hand side, but we want $2 x^{2}$. We therefore need to add $3 x^{2}$ by inserting a linear term into $q(x)$:

$$
x^{3}+2 x^{2}+4 x+3 \equiv(x-1)\left(x^{2}+3 x+\cdots\right)
$$

3. We now have $-3 x$ on the right hand side, but we want $4 x$. We therefore add $7 x$ by inserting a constant term into $q(x)$:

$$
x^{3}+2 x^{2}+4 x+3 \equiv(x-1)\left(x^{2}+3 x+7\right)
$$

4. Verify that the factorization is correct by multiplying the constants:

$$
x^{3}+2 x^{2}+4 x+3 \equiv(x-1)\left(x^{2}+3 x+7\right)
$$

Indeed $3 \equiv-7(\bmod 5)$ so we're done.
This approach works for any linear division and has the advantage of being able to write down the answer in one line. Of course, you're welcome to write it out using long division!

[^4]Examples 3.21. 1. Find all roots of $f(x) \equiv x^{4}+2 x^{3}+2 x-1(\bmod 7)$ and factorize.
We start by trying values: plainly $f(0) \equiv-1$ and $f(1) \equiv 4$ are non-zero. However

$$
f(2) \equiv 16+16+4-1 \equiv 2+2+4-1 \equiv 0 \quad(\bmod 7)
$$

so we factor out $x-2$:

$$
f(x) \equiv(x-2)\left(x^{3}+4 x^{2}+8 x+18\right) \equiv(x-2)\left(x^{3}-3 x^{2}+x-3\right) \quad(\bmod 7)
$$

$x \equiv 3$ is a root of the cubic, so we factor out $x-3$:

$$
f(x) \equiv(x-2)(x-3)\left(x^{2}+1\right) \quad(\bmod 7)
$$

It is easily checked that $x^{2}+1 \equiv 0(\bmod 7)$ has no solutions, so we're done.
2. Compare with Example 3.17 Modulo 6 we have a non-unique factorization:

$$
f(x) \equiv x^{2}-5 x \equiv x(x-5) \equiv(x-2)(x-3) \quad(\bmod 6)
$$

Re-read the proof of Lagrange's Theorem and make sure you understand where the argument fails!
3. Wind all solutions to $x^{2}+14 x-3 \equiv 0(\bmod 18)$. Rather than try all remainders $0,1, \ldots, 17$, here is a more systematic approach.
If x is a solution, then both

$$
\left\{\begin{array}{l}
x^{2}+14 x-3 \equiv x^{2}-1 \equiv 0 \quad(\bmod 2) \Longrightarrow x \text { odd, and } \\
x^{2}+14 x-3 \equiv x^{2}+5 x-3 \equiv 0 \quad(\bmod 9) \Longrightarrow x^{2}+2 x \equiv 0 \quad(\bmod 3)
\end{array}\right.
$$

Plainly $x \equiv 0,1(\bmod 3)$ (since 3 is prime, this is in line with Lagrange). We therefore try $x \equiv 0,1,3,4,6,7(\bmod 9)$ and observe that only $x \equiv 6,7(\bmod 9)$ work. We therefore have to solve two different sets of equations:

$$
\left\{\begin{array} { l l }
{ x \equiv 1 } & { (\operatorname { m o d } 2) } \\
{ x \equiv 6 } & { (\operatorname { m o d } 9) }
\end{array} \quad \text { or } \quad \left\{\begin{array}{ll}
x \equiv 1 & (\bmod 2) \\
x \equiv 7 & (\bmod 9)
\end{array}\right.\right.
$$

We have two sets of simultaneous equations. In general, the Chinese Remainder Theorem (later) can deal with these, but these are so simple that there is no need. For instance

$$
x \equiv 6 \quad(\bmod 9) \Longrightarrow x \equiv 6,15 \quad(\bmod 18)
$$

Since x must also be odd (and 18 is even), only $x \equiv 15(\bmod 18)$ will do. Similarly, the second simultaneous congruence has solution $x \equiv 7(\bmod 18)$.
4. Find all solutions to $x^{3}-2 x+1 \equiv 0(\bmod 12)$.

We easily spot that $x \equiv 1(\bmod 12)$ is a solution. Are there others? Considering the primes dividing 12 we see that any solution must satisfy

$$
x^{3}-2 x+1 \equiv(x-1)\left(x^{2}+x-1\right) \equiv 0 \quad(\bmod 2) \quad \text { and } \quad(\bmod 3)
$$

It is clear by inspection that the only solutions modulo 2 and 3 are $x \equiv 1$. It follows that any solution must satisfy $x \equiv 1(\bmod 6)$. Stepping this up to modulo 12 , we should try $x \equiv 1$ and $x \equiv 7(\bmod 12)$. The first is certainly a solution. As for the latter,

$$
7^{3}-2 \cdot 7+1 \equiv 7 \cdot 49-14+1 \equiv 7-2+1 \equiv 6 \quad(\bmod 12)
$$

It follows that the only solution is $x \equiv 1(\bmod 12)$.

Exercises 3.2 1. Solve the following equations for x, or show that there is no solution:
(a) $3 x-4 \equiv 7(\bmod 11)$
(b) $12 x+5 \equiv 7(\bmod 16)$
(c) $7 x-9 \equiv 5(\bmod 21)$
2. Solve the following polynomial congruence equations modulo a prime.
(a) $x^{2}+4 x+3 \equiv 0(\bmod 11)$
(b) $x^{3}-4 x \equiv 0(\bmod 17)$
(c) $x^{2}+4 x+1 \equiv 0(\bmod 13)$
(d) $x^{4}+4 x+2 \equiv 0(\bmod 7)$
(e) $x^{3}+x^{2}-2 \equiv 0(\bmod 13)$
(f) $x^{3}-100 x \equiv 0(\bmod 997)$

You can solve these by trial and error, but can you do them systematically?
3. Solve the following polynomial congruence equations modulo a composite.
(a) $x^{2}+4 x+5 \equiv 0(\bmod 10)$
(b) $x^{2}+4 x+3 \equiv 0(\bmod 15)$
(c) $x^{3}+x^{2}-2 \equiv 0(\bmod 39)$
4. Suppose that $\operatorname{gcd}(a, b)=1$. Prove that

$$
x \equiv 0 \quad(\bmod a b) \Longleftrightarrow \begin{cases}x \equiv 0 & (\bmod a) \\ x \equiv 0 & (\bmod b)\end{cases}
$$

What goes wrong when a, b are not coprime?
5. Informally explain why a quadratic congruence $a x^{2}+b x+c \equiv 0(\bmod 15)$ has at most four distinct solutions.

3.3 Powers and Fermat's Little Theorem

Fermat's Little ${ }^{6}$ Theorem provides a useful trick for simplifying large powers in congruences.
Theorem 3.22 (Fermat's Little Theorem). If p is prime and $p \nmid a$ then $a^{p-1} \equiv 1(\bmod p)$

Proof. Recall Exercise 3.2.8, where we saw that the remainders $a, 2 a, \ldots, a(p-1)$ are distinct and non-zero: they are simply $1,2, \ldots, p-1$ in a different order. Multiply these lists together to obtain

$$
a^{p-1}(p-1)!\equiv(p-1)!\quad(\bmod p)
$$

Since p is prime and $\operatorname{gcd}((p-1)!, p)=1$, we divide by $(p-1)$! for the result.
Examples 3.23. The power of Fermat's Little Theorem to simplify calculations is considerable. Imagine how tedious the following would be without it!

1. Since 239 is not divisible by the prime 137, we instantly see that

$$
239^{136} \equiv 1 \quad(\bmod 137)
$$

2. We compute the remainder when 66^{98} is divided by the prime 97 .

$$
\begin{aligned}
66^{98} & \equiv 66^{97-1} \cdot 66^{2} \equiv 66^{2} \quad(\bmod 97) \\
& \equiv(-31)^{2} \equiv 961 \equiv-9 \\
& \equiv 88 \quad(\bmod 97)
\end{aligned}
$$

3. We solve the high-degree congruence $x^{74} \equiv 12(\bmod 37)$.

First note that 37 is prime and that if there is a solution x, then it is non-zero. The theorem therefore applies, and we see that

$$
x^{37-1} \equiv x^{36} \equiv 1 \quad(\bmod 37)
$$

Since $74=36 \times 2+2$ we conclude that

$$
12 \equiv x^{74} \equiv\left(x^{36}\right)^{2} \cdot x^{2} \equiv x^{2} \quad(\bmod 37)
$$

We have therefore reduced the congruence to something much more manageable.
This new equation can be solved by brute force: by considering numbers congruent to 12 modulo 37, we don't have far to look before we find a perfect square!

$$
12,49, \ldots
$$

Thus $x \equiv 7$ is a solution, which says that $x \equiv-7 \equiv 30$ is another. By Lagrange's Theorem, there are at most two solutions to this congruence: we conclude

$$
x^{74} \equiv 12 \Longleftrightarrow x \equiv 7,30 \quad(\bmod 37)
$$

[^5]
Riffle-shuffling

As a fun example of Fermat at work, consider a standard 'riffle' shuffle of a 52-card deck of playing cards. The process is as follows:

- Label the cards $1,2,3, \ldots 52$ from bottom to top.
- Cut the deck into two stacks of 26 cards.
- Alternate cards from the bottom of each stack: position x moves to position $s(x)$, where

x	1	2	3	\cdots	25	26	27	28	\cdots	50	51	52
$s(x)$	2	4	6	\cdots	50	52	1	3	\cdots	47	49	51

It is not hard to give a formula to this function:

$$
s:\{1,2, \ldots, 52\} \rightarrow\{1,2, \ldots, 52\}: x \mapsto 2 x \quad(\bmod 53)
$$

We can now ask some simple questions:

1. If we keep perfectly shuffling the pack, will it eventually end up in the starting arrangement and how long with it take?
2. Of all possible arrangements of a deck, how many can be achieved just by shuffling?

Fermat's Little Theorem makes these questions easy to answer:

1. Shuffling n times produces the function

$$
s_{n}: x \mapsto 2^{n} x \quad(\bmod 53)
$$

Since 53 is prime, $s_{52}(x) \equiv 2^{52} x \equiv x(\bmod 53)$, whence every card ends up in its starting position after 52 riffle shuffles. It is tedious to check, but in fact this is the minimum number of shuffles required.
2. Even though there are $52!\approx 10^{68}$ potential arrangements of 52 cards in a deck, perfect shuffling of a new pack can only result in a comparatively tiny 52 distinct arrangements. Thankfully shuffling is rarely perfect, even when performed by a pro!

You should be able to think up several modifications of this problem, and we'll return to it later...

We finish with another nice result tying together Lagrange and Fermat.
Corollary 3.24 (Wilson's Theorem). If p is prime then $(p-1)!\equiv-1(\bmod p)$

Proof. Consider the polynomial congruence

$$
g(x) \equiv\left(x^{p-1}-1\right)-(x-1)(x-2) \cdots(x-(p-1)) \equiv 0 \quad(\bmod p)
$$

- Multiply out and cancel the leading x^{p-1} terms to see that g has degree at most $p-2$. Lagrange says that $g(x) \equiv 0$ has at most $p-2$ distinct roots.
- Fermat says that $g(x) \equiv 0$ has at least $p-1$ distinct roots, namely $x \equiv 1,2, \ldots, p-1$.

The only way to make sense of this is if $g(x)$ is not really a polynomial! It must be identically zero modulo p. It follows that

$$
x^{p-1}-1 \equiv(x-1)(x-2) \cdots(x-(p-1)) \quad(\bmod p)
$$

Finally, evaluate at $x \equiv 0$ for the result.
If you're having trouble understanding the proof, try an example! When $p=3$ we have

$$
g(x) \equiv x^{2}-1-(x-1)(x-2) \equiv x^{2}-1-x^{2}+3 x-2 \equiv 3 x-3 \equiv 0 \quad(\bmod 3)
$$

The point is that while $g(x)$ might look like it has degree ≤ 1, it is in fact the zero polynomial.
Exercises 3.3 1. Solve the following congruences with the assistance of Fermat's Little Theorem.
(a) $x^{86} \equiv 6(\bmod 29)$
(b) $x^{39} \equiv 8(\bmod 13)$
(c) $x^{502} \equiv 16(\bmod 101)$
2. Let p be prime. By describing the distinct roots of $x^{p-1}-1 \equiv 0$ and factorizing, prove that

$$
x^{p-1}-1 \equiv a(x-1)(x-2) \cdots(x-(p-1)) \quad(\bmod p)
$$

for some non-zero $a \in \mathbb{Z}_{p}$. Hence provide an alternative proof of Wilson's Theorem.
3. Recall the binomial theorem: $(x+y)^{p}=\sum_{k=0}^{p}\binom{p}{k} x^{k} y^{p-k}$, where $\binom{p}{r}=\frac{p!}{r!(p-r)!}$ (this is an integer ${ }^{a}$.
(a) If p is prime and $1 \leq r \leq p-1$, prove that $p \left\lvert\,\binom{ p}{r}\right.$. Hence prove that

$$
(x+y)^{p} \equiv x^{p}+y^{p} \quad(\bmod p)
$$

(b) For any integers x_{1}, \ldots, x_{n}, prove that $\left(x_{1}+\cdots+x_{n}\right)^{p} \equiv x_{1}^{p}+\cdots+x_{n}^{p}(\bmod p)$.
(c) Prove that $a^{p} \equiv a(\bmod p)$ for all integers a. Hence give an alternative proof of Fermat.
4. (a) Suppose a deck has 30 cards. Argue that riffle shuffling will eventually reset the deck.
(b) How many shuffles do you really need when there are 30 cards? It is a lot less than $30 \ldots$
(c) Suppose that a deck has $2 m$ cards. What might go wrong with the argument?

[^6]
[^0]: ${ }^{1}$ It is obvious that $m=3$ but leaving this unsaid makes it easier to see a proof of the following theorem.
 ${ }^{2}$ If $\operatorname{gcd}(a, b)=1$ and $a \mid b c$, then $a \mid c$. This is the crucial step in the calculation, corresponding to the \Longrightarrow arrows in both the proof and the previous example.

[^1]: ${ }^{3}$ More formally, it inherits this structure from the integers as a factor ring: $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}=\{[0],[1], \ldots,[n-1]\}$ is a set of equivalence classes where $x \sim y \Longleftrightarrow x \equiv y(\bmod n)$. For this course, familiarity with this construction is unimportant.

[^2]: ${ }^{a}$ Because $\operatorname{gcd}(15,133)=1$, we see that 15 is a unit modulo 133. Indeed the Bézout calculation says that its inverse is $15^{-1} \equiv-62 \equiv 71 \in \mathbb{Z}_{133}$. Since $133=7 \cdot 19$, the units are precisely those elements which are divisible by neither 7 nor 19 .

[^3]: ${ }^{4} p \mid\left(c_{2}-c_{1}\right) q_{1}\left(c_{2}\right)$ and $\operatorname{gcd}\left(c_{2}-c_{1}, p\right)=1$, whence $p \mid q_{1}\left(c_{2}\right)$.

[^4]: ${ }^{5}$ Plainly $-1 \equiv 2(\bmod 3)$: it is simply easier to use 'smaller' representatives when calculating.

[^5]: ${ }^{6}$ To distinguish it from his famous Last Theorem. The little theorem is often abbreviated F ℓ T, and the last FLT.

[^6]: ${ }^{a}$ Can you convince yourself of this? How many ways can you choose r objects from p ?

