
4 Euler’s Totient Function

4.1 Euler’s Function and Euler’s Theorem

Recall Fermat’s little theorem:

p prime and p ∤ a =⇒ ap−1 ≡ 1 (mod p)

Our immediate goal is to think about extending this to composite moduli. First let’s search for patterns
in the powers ak modulo 6, 7 and 8:

modulo 6 modulo 7 modulo 8

k 1 2 3 4 5
a = 1 1 1 1 1 1

2 2 4 2 4 2
3 3 3 3 3 3
4 4 4 4 4 4
5 5 1 5 1 5

k 1 2 3 4 5 6
a = 1 1 1 1 1 1 1

2 2 4 1 2 4 1
3 3 2 6 4 5 1
4 4 2 1 4 2 1
5 5 4 6 2 3 1
6 6 1 6 1 6 1

k 1 2 3 4 5 6 7
a = 1 1 1 1 1 1 1 1

2 2 4 0 0 0 0 0
3 3 1 3 1 3 1 3
4 4 0 0 0 0 0 0
5 5 1 5 1 5 1 5
6 6 4 0 0 0 0 0
7 7 1 7 1 7 1 7

The column in red (modulo 7) represents Fermat’s little theorem. Unfortunately there don’t seem to
be many 1’s in the other tables: indeed the tables should suggest the following.

Lemma 4.1. If k ≥ 1 is such that ak ≡ 1 (mod n), then gcd(a, n) = 1 (a is a unit modulo n).

The proof is a (hopefully) straightforward exercise.
We turn now to the converse: if gcd(a, n) = 1, can we find k such that ak ≡ 1 (mod n)? Again, let’s
consider the tables and look for patterns:

Modulo 6 The units are a ≡ 1, 5. For such a we see that a2 ≡ 1 (mod 6).

Modulo 7 Every non-zero remainder is a unit, and a6 ≡ 1 (mod 7).

Modulo 8 The units are a ≡ 1, 3, 5, 7. For such a we see that a2 ≡ 1 (mod 8).

In each case, observe that ak ≡ 1 whenever k is the number of units1 modulo n. Given all this, we make
a definition and a hypothesis:

Definition 4.2. Euler’s totient function φ : N → N is defined by2

φ(n) =
∣∣{0 < a ≤ n : gcd(a, n) = 1}

∣∣
Theorem 4.3 (Euler’s Theorem). If gcd(a, n) = 1 then aφ(n) ≡ 1 (mod n).

1Certainly a4 ≡ 1 (mod 8) satisfies this pattern, even though a lower power k = 2 does also.
2Whenever n ≥ 2, Euler’s function returns the number of units modulo n. The definition is constructed so as to include

φ(1) = 1. In what follows, the n = 1 case is always trivial and uninteresting; to avoid tedium we’ll assume that n ≥ 2.
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Here are the first few values of Euler’s function; we also list the units.

φ(1) = 1 =
∣∣{1}

∣∣ φ(7) = 6 =
∣∣{1, 2, 3, 4, 5, 6}

∣∣
φ(2) = 1 =

∣∣{1}
∣∣ φ(8) = 4 =

∣∣{1, 3, 5, 7}
∣∣

φ(3) = 2 =
∣∣{1, 2}

∣∣ φ(9) = 6 =
∣∣{1, 2, 4, 5, 7, 8}

∣∣
φ(4) = 2 =

∣∣{1, 3}
∣∣ φ(10) = 4 =

∣∣{1, 3, 7, 9}
∣∣

φ(5) = 4 =
∣∣{1, 2, 3, 4}

∣∣ φ(11) = 10 =
∣∣{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

∣∣
φ(6) = 2 =

∣∣{1, 5}
∣∣ φ(12) = 4 =

∣∣{1, 5, 7, 11}
∣∣

Whenever p is prime, we clearly have φ(p) = p − 1, from which we see that Fermat’s little theorem
is merely a special case of Euler’s. You should mentally check that the main result holds for several
of the values listed above with composite moduli: e.g.

4φ(9) ≡ 46 ≡ 163 ≡ (−2)3 ≡ −8 ≡ 1 (mod 9)

Perhaps unsurprisingly, we can prove Euler’s theorem analogously to how we proved Fermat’s.

Proof. Let a be a unit and let Z×
n = {x ∈ Zn : gcd(x, n) = 1} be the set of units modulo n. Define

fa(x) = ax (mod n). We claim that fa : Z×
n → Z×

n is bijection (invertible). This requires two checks:

1. If x ∈ Z×
n , then fa(x) = ax is also a unit: if neither a nor x have any common divisors with n,

then neither does the product ax.

2. Since a is a unit, it has an inverse b. But then f−1
a = fb as is readily checked: for any x,

( fa ◦ fb)(x) ≡ fa
(

fb(x)
)
≡ a(bx) ≡ (ab)x ≡ x (mod n)

Since fa : Z×
n → Z×

n is bijective, we may list the units in two ways:

Z×
n = {x1, x2, . . . , xφ(n)} = {ax1, ax2, . . . , axφ(n)}

Multiply these together to obtain

x1x2 · · · xφ(n) ≡ ax1ax2 · · · axφ(n) ≡ aφ(n)x1x2 · · · xφ(n) (mod n)

Since the xi are all relatively prime to n, we may divide out, thus obtaining the result.

Example 4.4. It should be clear that gcd(a, 35) = 1 ⇐⇒ gcd(a, 5) = 1 and gcd(a, 7) = 1, whence
the set of units modulo 35 is

Z×
35 = Z35 \ {0, 5, 10, 15, 20, 25, 30, 7, 14, 21, 28} =⇒ φ(35) = 35 − 11 = 24

We may now employ this to simplify congruences as we did with Fermat. For instance, suppose you
wanted to solve the congruence equation

x49 ≡ 12 (mod 35)

First observe that if x is a solution and gcd(x, 35) = d, then d |12 and d |35, whence d = 1: it follows
that x is a unit and we may apply Euler’s theorem.

x24 ≡ 1 =⇒ x49 ≡ x ≡ 12 (mod 35)
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Computing Euler’s Function

Rather than a laborious direct computation, we follow the classic number-theory approach: worry
about primes first, then powers of primes, then glue everything together.

φ(p) where p is prime: Since Z×
p = {1, . . . , p − 1}, we plainly have φ(p) = p − 1.

φ(p2): We want to count the remainders in the set {1, 2, 3, . . . , p2} which are coprime to p2: this
means deleting the multiples of p:

φ(p2) = Z×
p2 =

∣∣{1, 2, . . . , p2} \ {p, 2p, 3p, . . . , (p − 1)p, p2}
∣∣ = p2 − p

φ(pk): We again delete the multiples of p:

∣∣∣{1, . . . , pk} \ {ap : 1 ≤ a ≤ pk−1}
∣∣∣ = pk − pk−1 =⇒ φ(pk) = pk

(
1 − 1

p

)

It remains to investigate moduli n which are divisible by more than one prime. Start by looking for
patterns in the table of small values on page 2 and observe that

φ(6) = φ(2)φ(3), φ(10) = φ(2)φ(5), φ(12) = φ(3)φ(4)

Moreover, recalling Example 4.4, we see that φ(35) = 24 = 4 · 6 = φ(5)φ(7) also satisfies the pattern!
We therefore have a hypothesis.

Theorem 4.5. Euler’s function φ is multiplicative:

gcd(m, n) = 1 =⇒ φ(mn) = φ(m)φ(n)

There are many simpler examples of multiplicative functions, for instance

f (x) = 1, f (x) = x, f (x) = x2

though these satisfy the product formula even if m, n are not coprime. The Euler function is more
exotic; it really requires the coprime restriction!
Using the unique prime decomposition, the theorem quickly tells us that

φ(n) = φ(pµ1
1 · · · pµk

k ) = φ(pµ1
i ) · · · φ(pµk

n ) = pµ1
1 (1 − p−1

1 ) · · · pµk
k (1 − p−1

k )

from which we conclude:

Corollary 4.6. φ(n) = n ∏
p|n

(
1 − 1

p

)
= n ∏

p|n

p−1
p

We don’t need the entire decomposition, only the list of distinct primes dividing n.

Example 4.7. 1. φ(72) = φ(8 · 9) = φ(23 · 32) = 72 · 1
2 ·

2
3 = 24.

2. φ(1000000) = 1000000 · 1
2 ·

4
5 = 400000
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Proving the multiplicative property is a little awkward. To help follow along, consider listing all the
remainders modulo 36 = 9 × 4 in a rectangle:

0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35

The units (coprime to 36) are distributed in six columns containing two each. By rewriting the table
modulo 9 and 4 we can now make an argument for why φ(36) = 12 = 6 × 2 = φ(9)φ(4):

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 0 1 2 3 0
1 2 3 0 1 2 3 0 1
2 3 0 1 2 3 0 1 2
3 0 1 2 3 0 1 2 3

1. The columns being distinct modulo 9, all elements coprime to 9 lie in one of φ(9) = 6 columns.

2. Each column contains a complete set of remainders modulo 4; exactly φ(4) = 2 entries in each
column are therefore coprime to 4.

3. A remainder is coprime to 36 if and only if it is coprime to both 9 and 4: such must be one of
the φ(4) entries in one of the φ(9) columns of interest. We conclude that φ(36) = φ(9)φ(4).

The proof of the multiplicative property is merely an abstraction of this example.

Proof of Theorem 4.5. If either of m, n are equal to 1, then φ(mn) = φ(m)φ(n) is trivial. We therefore
suppose that gcd(m, n) = 1 where m, n > 1 and list all the elements of Zmn in an n × m table:

0 1 2 · · · m − 1
m m + 1 m + 2 · · · m + (m − 1)

2m 2m + 1 2m + 2 · · · 2m + (m − 1)
...

...
...

...
(n − 1)m (n − 1)m + 1 (n − 1)m + 2 · · · (n − 1)m + (m − 1)

We count the φ(mn) entries coprime to mn in a different way, by first observing that

gcd(x, mn) = 1 ⇐⇒ gcd(x, m) = 1 = gcd(x, n)

In the first row of the table there are φ(m) entries coprime to m. Since each column is congruent
modulo m, the entries coprime to m consist precisely of everything in these φ(m) columns.
Now consider the jth column: j, m + j, 2m + j, . . . , (n − 1)m + j. Since gcd(m, n) = 1, no two of these
elements are congruent modulo n:

km + j ≡ lm + j =⇒ km ≡ lm =⇒ k ≡ l (mod n)

Each column consists of a complete set of remainders modulo n, and so φ(n) of the entries in each
column are coprime to n.
Putting this together, we have φ(m) columns coprime to m, each of which contains φ(n) entries
coprime to n: thus φ(m)φ(n) entries in the full table are coprime to both m and n.
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Example 4.8. As a nice example of the formula, we find all n such that φ(n) = 6 = 2 · 3.

Writing n = pµ1
1 · · · pµk

k , we see that 2 · 3 = pµ1−1
1 · · · pµk−1

k (p1 − 1) · · · (pk − 1). The divisors of 6 are
1, 2, 3, 6: if one greater than these is prime, that prime might also be a divisor of n: thus we need
also consider at most one factor of 7: n = 2a3b7c where a, b ≥ 0 and c = 0, 1. Now compute all the
possibilities:

2 · 3 = φ(n) =
(

2a−1

1

)
·
(

2 · 3b−1

1

)
·
(

6
1

)
where we must take one factor from each pair (the bottom row corresponds to a, b, c = 0). It is not
hard to check that only ways to make 6 are

• φ(n) = 1 · 1 · 6 =⇒ n = 203071 = 7

• φ(n) = 21−1 · 1 · 6 =⇒ n = 213071 = 14

• φ(n) = 1 · (2 · 32−1) · 1 =⇒ n = 203270 = 9

• φ(n) = 21−1 · (2 · 32−1) · 1 =⇒ n = 213270 = 18

Counting residues Euler’s function records how many integers in Zn are relatively prime to n.
What about counting residues with other gcd’s with n? Euler’s function does this as well.

Lemma 4.9. If d |n, then φ
( n

d

)
residues a satisfy gcd(a, n) = d.

Proof. Start by observing that gcd(a, n) = d ⇐⇒ gcd
( a

d , n
d

)
= 1. However, by definition, φ

( n
d

)
of

the values 1 ≤ a
d ≤ n

d are coprime to n
d .

Example 4.10. There are φ( 136
4 ) = φ(34) = 16 integers 1 ≤ a ≤ 136 for which gcd(136, a) = 4.

Indeed these are precisely

4, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 132

More surprising perhaps is what happens when you sum the value of Euler’s function over all divi-
sors of an integer.

Theorem 4.11. Summing over all positive divisors d of n, we obtain ∑
d|n

φ(d) = n

Proof. Partition {1, . . . , n} into subsets according to the gcd of each with n. By Lemma 4.9, this
gcd(a, n) = d for exactly φ

( n
d

)
of the numbers. Hence

∑
d|n

φ
(n

d

)
= n

since we’ve counted the whole set! Since the values n
d are simply the divisors of n listed in the reverse

order to d, the sums must be identical: ∑
d|n

φ
( n

d

)
= ∑

d|n
φ(d).
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Example 4.12. With n = 28, we verify that

∑
d|28

φ(d) = φ(1) + φ(2) + φ(4) + φ(7) + φ(14) + φ(28)

= 1 + 1 + 2 + 6 + 6 + 12 = 28

Exercises 4.1 1. Find the values of φ(97) and φ(8800).

2. Prove Lemma 4.1.

3. (a) If n ≥ 3, explain why φ(n) is always even.
(b) Find all values n for which φ(n) is not divisible by 4.

4. Find all n such that φ(n) is the indicated value:

(a) φ(n) = 10 (b) φ(n) = 12 (c) φ(n) = 20 (d) φ(n) = 100

5. Find all values n that solve each of the following equations. If there are none, explain why.

(a) φ(n) = n
2 (b) φ(n) = n

3 (c) φ(n) = n
6

For an extra challenge, find all n for which φ(n) |n.

6. Show that if d |n then φ(d) | φ(n).

7. Suppose gcd(a, b) = d. Use prime decompositions to prove that φ(ab) =
dφ(a)φ(b)

φ(d)

8. (A challenge!) Show that ∑
d|n

(−1)n/d φ(d) =

{
0 if n even
−n if n odd

(Hint: write n = 2km where m is odd and take the k = 0,≥ 1 cases separately)

9. A unit x ∈ Zn (i.e. gcd(x, n) = 1) is a primitive root modulo n if the smallest exponent k such that
xk ≡ 1 (mod n) is k = φ(n).

(a) Find a primitive root modulo 7. Modulo 14.
(b) Show that 8 does not have any primitive roots.
(c) If x is a primitive root modulo n, prove that the set of units in Zn is given by

{x, x2, . . . , xφ(n)}

10. Recall the discussion of riffle-shuffling from the previous chapter.

(a) Show that repeatedly shuffling a pack of 2m cards always eventually returns the pack to
its initial position.

(b) Let n ≥ 1 be the minimum number of shuffles required to return the deck to its original
order.

i. Compute n when 2m = 4, 6, 8, 10, 12, 14.
ii. Prove that n | φ(2m + 1).

(Hint: apply the division algorithm to φ(2m + 1) and n)
(c) Investigate what happens if you try to shuffle an odd number of cards. Or if you shuffle

so that the bottom card (labelled 1) starts on the bottom?
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4.2 The Chinese Remainder Theorem

In this section we see how to solve simultaneous congruence equations. This is straightforward to see
with a small example.

Example 4.13. Solve the simultaneous congruences{
x ≡ 4 (mod 50)
x ≡ 15 (mod 33)

Any solution x simultaneously satisfies x = 4 + 50k = 15 + 33l for some integers k, l. Applying the
Euclidean algorithm (or invoking divine intervention), we see that

(k, l) = (22,−33) satisfies 50k + 33l = 11

whence x = 4 + 50 · 22 = 1104 solves the congruences.
We can say a little more, since we know that all suitable k satisfy k = 22 + 33t for some t ∈ Z, and so
all solutions x have the form

x = 4 + 50(22 + 33t) = 1104 + 50 · 33t ≡ 1104 (mod 1650)

We therefore have a unique solution modulo the product of the original moduli.

This pattern holds in general, provided the moduli are coprime.

• Suppose x ≡ a (mod m) and x ≡ b (mod n). Otherwise said,

∃k, l ∈ Z such that x = a + km = b + ln =⇒ km − ln = b − a

• Since gcd(m, n) = 1, we can find suitable k, l using Bézout’s identity: if κm + λn = 1, then

(b − a)κm + (b − a)λn = b − a
=⇒ k = (b − a)κ + nt : t ∈ Z

=⇒ x = a + ((b − a)κ + nt)m ≡ a + (b − a)κm (mod mn)
≡ a(1 − κm) + bκm ≡ aλn + bκm (mod mn) (∗)

Not only do we see that the simultaneous congruence has a unique solution modulo mn, but we have
a nice formula for evaluating it. Before seeing the full result, note that our abstract expression (∗) for
x really does satisfy both congruences:{

aλn + bκm ≡ aλn ≡ a (mod m)

aλn + bκm ≡ bκm ≡ b (mod n)

The observation is that λn ≡ 1 (mod m) and κm ≡ 1 (mod n); that is, we have inverses for m and n
modulo each other.
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Theorem 4.14 (Chinese Remainder Theorem). Suppose that moduli n1, . . . , nk are pairwise co-
primea. Then the simultaneous congruences

x ≡ b1 (mod n1), x ≡ b2 (mod n2), . . . x ≡ bk (mod nk) (†)

have a unique solution modulo N := n1 · · · nk. Specifically, for each i, define Ni =
N
ni

and compute its
inverse λiNi ≡ 1 (mod ni), then

x ≡ b1λ1N1 + b2λ2N2 + · · ·+ bkλkNk (mod N)

agcd(ni, nj) = 1 whenever i ̸= j

Proof. Plainly gcd(Ni, ni) = 1 since Ni =
N
ni

is the product of all coprime moduli n1 · · · nk except ni.
Bézout’s identity says Ni has an inverse λi modulo ni. Moreover, since j ̸= i =⇒ nj |Ni, we have

λiNi ≡
{

0 (mod nj) if i ̸= j
1 (mod ni)

It is now immediate that the advertised x solves all the congruences (†).
Finally suppose that y also solves the congruences. Then x − y ≡ 0 (mod ni) for all i which, since
the ni are pairwise coprime, forces x ≡ y (mod N).

Examples 4.15. 1. First we revisit Example 4.13 in this language.

x ≡ 4 (mod 50), x ≡ 15 (mod 33)

The moduli 50 and 33 are pairwise coprime so the theorem applies. We compute

N = 50 · 33 = 1650, N1 = 33, N2 = 50 (N1 = mn
m = n and N2 = m in (∗))

We must therefore solve:{
33λ1 ≡ 1 (mod 50) =⇒ λ1 ≡ −3
50λ2 ≡ 1 (mod 33) =⇒ λ2 ≡ 2

(λ1 = λ and λ2 = κ in (∗))

Finally,

x ≡ b1λ1N1 + b2λ2N2 ≡ 4 · (−3) · 33 + 15 · 2 · 50 ≡ 1500 − 396 ≡ 1104 (mod 1650)

2. Find all solutions x ∈ Z to the simultaneous congruences

x ≡ 3 (mod 5), x ≡ 5 (mod 7), x ≡ 2 (mod 8)

Since the moduli 5, 7 and 8 are pairwise coprime the theorem applies and we compute:

N = 5 · 7 · 8 = 280, N1 = 56, N2 = 40, N3 = 35

=⇒


56λ1 ≡ 1 (mod 5) =⇒ λ1 ≡ 1
40λ2 ≡ 1 (mod 7) =⇒ λ2 ≡ 3
35λ3 ≡ 1 (mod 8) =⇒ λ3 ≡ 3

=⇒ x ≡ 3 · 1 · 56 + 5 · 3 · 40 + 2 · 3 · 35 ≡ 978 ≡ 138 (mod 280)
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Non-coprime moduli?

We state without proof the following generalization of the Chinese Remainder Theorem.

Corollary 4.16. A system of congruences (†) may be solved if and only if gcd(ni, nj) | (bi − bj) for
all i ̸= j. In such a case, all solutions are congruent modulo lcm(n1, . . . , nk).

The method is essentially to remove superfluous congruences so that we can apply the Chinese Re-
mainder Theorem.

Example 4.17. The corollary applies to the simultaneous congruences

x ≡ 1 (mod 3), x ≡ 2 (mod 4), x ≡ 8 (mod 10)

the only divisor property we need to check being gcd(4, 10) | (2 − 8).
The final congruence holds if and only if x ≡ 0 (mod 2) and x ≡ 3 (mod 5). The first condition is
unnecessary since it follows from x ≡ 2 (mod 4). We therefore solve the congruence system

x ≡ 1 (mod 3)
x ≡ 2 (mod 4)
x ≡ 3 (mod 5)

=⇒ x ≡ 58 (mod 60) (‡)

using the standard Chinese remainder theorem. Note that the modulus is 60 = lcm(3, 4, 10).

Exercises 4.2 1. Find the solutions to the following simultaneous congruences using the Chinese
remainder theorem.

(a) x ≡ 2 (mod 5), x ≡ 3 (mod 9)
(b) x ≡ 1 (mod 4), x ≡ 4 (mod 15)

2. (a) Do the calculations to solve the simultaneous triple congruence (‡) in Example 4.17.
(b) Solve the triple congruence

x ≡ 3 (mod 4), x ≡ 5 (mod 21), x ≡ 7 (mod 25)

(c) Solve the triple congruence (be careful!)

3x ≡ 9 (mod 12), 4x ≡ 5 (mod 35), 6x ≡ 2 (mod 11)

3. Give x explicitly in terms of b1, . . . , b4 if

x ≡ b1 (mod 2), x ≡ b2 (mod 3), x ≡ b3 (mod 5), x ≡ b4 (mod 7)

4. Find the solutions: note the generalized Corollary 4.16.

(a) x ≡ 1 (mod 3), x ≡ 1 (mod 4), x ≡ 7 (mod 10)
(b) x ≡ 1 (mod 12), x ≡ 4 (mod 21), x ≡ 18 (mod 35)

5. Solve x3 − x + 15 ≡ 0 (mod 63).

(Don’t just list solutions! Consider modulo 7 and 9 then use the Chinese remainder theorem)

6. Prove the (⇒) direction of Corollary 4.16: if the system has a solution, then gcd(ni, nj) | (bi − bj).
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