
5 Primes

5.1 The Distribution of the Set of Primes

Given the usefulness of primes as the ‘building blocks’ of the integers, we naturally want to investi-
gate how they are distributed: we’d like answers to questions such as the following.

1. How many primes are there?

2. How many primes are there with a certain property? (e.g. congruent to 3 modulo 4)

3. If we have discovered the first n primes, how much larger is the next?

4. Can we write every even integer ≥ 4 as a sum of two primes?

5. Are there infinitely many primes p such that p + 2 is also prime?

6. Does there exist at least one prime between any consecutive squares?

7. Are there infinitely many primes of the form N2 + 1?

The first three questions can, more or less, be answered, whereas the remaining four are famous
conjectures (the Goldbach, Twin Prime, Legendre’s and N2 + 1 conjectures respectively) that have
remained unsolved for over a century.1

The first question has the oldest answer: we earlier saw Euclid’s Theorem stating that there are
infinitely many primes. We can extend his approach to other situations. For example, it is clear that
any prime p ≥ 3 cannot be even and must therefore be congruent to 1 or 3 modulo 4. Consider the
following table of the primes p such that 3 ≤ p ≤ 120, arranged by remainder modulo 4:

p ≡ 1 (mod 4) 5 13 17 29 37 41 53 61 73 89 97 101 109 113 · · ·
p ≡ 3 (mod 4) 3 7 11 19 23 31 43 47 59 67 71 79 83 103 107 · · ·

It appears that the primes are fairly evenly distributed between the two classes, and we might rea-
sonably conjecture that there are infinitely many primes of each type. This is indeed the case.

Theorem 5.1. Infinitely many primes are congruent each to 1 and 3 modulo 4.

Proof of half the Theorem. We modify Euclid’s proof. Suppose that there are finitely many primes con-
gruent to 3 modulo 4: list them as 3, p1, . . . , pn and define

Π := 4p1 p2 p3 · · · pn + 3

Certainly Π ≡ 3 (mod 4) and therefore odd, so all primes dividing it are odd. Note that

x, y ≡ 1 (mod 4) =⇒ xy ≡ 1 (mod 4) (∗)

hence, if all primes dividing Π were congruent to 1, so also would be Π. Plainly Π is divisible by
some prime p ≡ 3 (mod 4). By assumption we have all of these, and there are two possibilities:

1. p = 3 from which 3 | 4p1 p2 p3 · · · pn =⇒ 3 | pi =⇒ pi = 3 for some i; a contradiction.

2. p = pi for some i, in which case p | 3 =⇒ p = 3; again a contradiction.

1Several results which are very close to these have been proved recently, for example the weak Goldbach conjecture
states that every odd integer ≥ 9 is the sum of three odd primes was proved in 2013.
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Before moving on, consider why the proof cannot be modified to show that infinitely many primes
are congruent to 1 modulo 4. One issue is that the corresponding proposition to (∗) is false: in fact

x, y ≡ 3 (mod 4) =⇒ xy ≡ 1 (mod 4)!

and we cannot therefore claim that any Π ≡ 1 (or ≡ 3) is divisible by a prime congruent to 1. Indeed:

• Π := 21 = 3 · 7 ≡ 1 (mod 4) is not divisible by any primes congruent to 1.

• Π := 3 · 7 · 11 = 231 ≡ 3 (mod 4) is not divisible by any primes congruent to 1.

A simple proof of the ≡ 1 part of the Theorem will be given later using quadratic residues.
In fact a much harder and more general result is available.

Theorem 5.2 (Dirichlet). If gcd(a, m) = 1, then infinitely many primes p satisfy p ≡ a (mod m).

Counting Primes Now we turn to the third in our list of questions. To think about this, we intro-
duce the concept of a counting function: a function f : N → N0 for which f (x) is the number of
positive integers less or equal to x satisfying some property. Euler’s totient function φ is an example:

φ(x) = |{n ∈ N≤x : gcd(x, n) = 1}|
Here is another.

Example 5.3. Consider the counting function

f (x) = |{n ∈ N≤x : n ≡ 4 (mod 7)}|

To get a feel for f , compute the first few values:

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
f (x) 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3

It seems reasonable to claim that, for large x, f (x) is approximately a seventh of x. More precisely,

x − 3
7

≤ f (x) <
x + 4

7
=⇒ x − 3

7x
≤ f (x)

x
<

x + 4
7x

Squeeze
=⇒
Thm

lim
x→∞

f (x)
x

=
1
7

There is terminology for this: ‘ f (x) is asymptotic to 1
7 x,’ and we write

f (x) ∼ 1
7

x

Intuitively, f (x) grows like 1
7 x. This is one way of giving precision to the statement, ‘one seventh of

the integers are congruent to 4 modulo 7.’

Armed with our new notation, we consider the asymptotic behavior of the primes.

Definition 5.4. π(x) := |{p : p ≤ x}| is the number of primes less than x.

Theorem 5.5 (Prime number theorem). π(x) ∼ x
ln x . Otherwise said, lim

x→∞
π(x)

x/ ln x = 1.
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A proof is too involved for this course; interpreting the result is tough enough! One approach in-
volves probability: the chance of a random integer in the interval [1, x] being prime is

P
(
y ∈ [1, x] prime

)
=

π(x)
x

≈ 1
ln x

While the expression x
ln x estimates the function π(x), it is, in fact, always an under-estimate. A more

accurate estimate involves an integral, albeit one that needs its own estimation!

π(x) ∼
∫ x

2

1
ln t

dt

Example 5.6. To check the veracity of these claims: consider the 1000th prime p1000 = 7919:

π(7919) = 1000,
7919

ln 7919
≈ 882,

∫ 7919

2

1
ln t

dt ≈ 1016

A little extra algebra tells us that the nth prime should be located around pn ≈ n ln n. Indeed
1000 ln 1000 ≈ 6908, which is a 13% under-estimate.

Exercises 5.1 1. (a) Verify that every even number between 70 and 80 is a sum of two primes.

(b) How many different ways can 70 be written as a sum of two primes 70 = p+ q with p ≤ q?
Repeat the question for 80.

2. (a) Show that if p ≥ 5 is prime, then p ≡ ±1 (mod 6).
(b) Mimic the half-proof of Theorem 5.1 to show that there are infinitely many primes congru-

ent to 5 modulo 6.
(Hint: let Π := 6p1 p2 · · · pn + 5 where p1, . . . , pn ≡ 5 (mod 6))

3. (a) Explain the statement “one-fifth of all numbers are congruent to 2 modulo 5” by using the
counting function

F(x) = |{positive numbers n ≤ x satisfying n ≡ 2 (mod 5)}|

(b) Explain the statement “most numbers are not squares” by using the counting function

S(x) = |{square numbers less than x}|

4. Let n be large. By computing x
ln x when x = n ln n, argue that pn ≈ n ln n is a reasonable estimate

for the value of the nth prime. Use this expression to argue that, for large n,

pn+1 − pn ≈ 1 + ln(n + 1)

Comment on the values of p1000 and p1001.

5. (Hard) Let p be an odd prime and consider the quantity

Ap

Bp
:= 1 +

1
2
+

1
3
+

1
4
+ · · ·+ 1

p − 1
where gcd(Ap, Bp) = 1

(a) Find the value of Ap (mod p) and prove that your answer is correct.
(b) (Even harder - also proves part (a)) Make a conjecture for Ap (mod p2) and prove it.

(Hint: try adding 1
k +

1
p−k in pairs)
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5.2 Mersenne Primes and Perfect Numbers

While Euclid assures us that the set of primes is infinite, this hasn’t prevented a semi-formal compe-
tition to find the largest known prime. Prior to the advent of computers and mechanical calculators,
the largest verified prime had 39 digits. As of early 2022, the largest known prime is 282,589,933 − 1
with 24,862,048 digits! Such primes have a special name.

Definition 5.7. A Mersenne prime is a prime of the form Mp = 2p − 1 where p is itself prime.

These are named for Marin Mersenne, a 17th century French music theorist, mathematician and
priest.

Examples 5.8. M2 = 22 − 1 = 3, M3 = 23 − 1 = 7, M5 = 25 − 1 = 31, M7 = 27 − 1 = 127. Not
all Mersenne numbers are prime, for instance

M11 = 211 − 1 = 2047 = 23 · 89

In fact most Mersenne numbers are not prime; the current largest known prime is only the 51st

Mersenne prime to be discovered! It is merely conjectured that there are infinitely many of them.

Whenever the ‘world’s largest prime’ is announced, it is usually a Mersenne prime.2 There are several
reasons for this: a simple motivator is the fact that exponentiation quickly provides large candidates.
A related reason is that similar-looking numbers with other bases are never prime:

Theorem 5.9. If P = an − 1 is prime for some a, n ≥ 2, then a = 2 and n is prime: that is, P is a
Mersenne prime.

Proof. If a ≥ 3, then

an − 1 = (a − 1)(an−1 + an−2 + · · ·+ a + 1)

is composite. By a similar factorization, if n = mk is composite, so also is 2n − 1:

2n − 1 = (2m)k − 1 = (2m − 1)((2m)k−1 + (2m)k−2 + · · ·+ 1)

There are many known results about Mersenne primes; look them up if you are interested. We now
turn our attention to an old problem which turns out to be related to Mersenne primes, using it partly
as an excuse to introduce another commonly-used function.

Definition 5.10. Let n ∈ N. Define σ(n) = ∑
d|n

d to be the sum of the (positive) divisors of n.

We say that n is perfect if it equals the sum of its proper (positive) divisors: that is

σ(n) = 2n (= proper divisors + n)

Examples 5.11. 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14 are both perfect.

2The Great Internet Mersenne Prime Search is an ongoing collaborative project hunting for such: anyone with a com-
puter can sign up. If you’re the first to find a prime with 100 million digits, $100,000 could be yours!
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We can compute σ(n) similarly to how we evaluated Euler’s function. First observe a simple fact
following from unique prime factorization:

If gcd(m, n) = 1 and d |mn, then d = d1d2 is uniquely a product of divisors d1 |m and d2 |n

(prime factorization!). When m, n are coprime, it is now immediate that

σ(mn) = ∑
d|mn

d = ∑
d1|m, d2|n

d1d2 = ∑
d1|m

d1 · ∑
d2|n

d2 = σ(m)σ(n)

Moreover, the geometric series formula allows us to easily compute σ applied to a prime power:

σ(pµ) =
µ

∑
j=0

pj =
pµ+1 − 1

p − 1

and we’ve now proved the main result:

Theorem 5.12. σ is multiplicative. Moreover, if n = pµ1
1 · · · pµk

k is the prime decomposition of n,
then

σ(n) =
k

∏
j=1

p
µj+1
j − 1

pj − 1

Examples 5.13. The sum of the positive divisors of 260 = 22 · 5 · 13 is

σ(260) =
23 − 1

1
· 52 − 1

4
· 132 − 1

12
= 588

This can tediously be checked since 260 has divisors 1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 260.
Repeating with n = 1000 = 23 · 53, we see that

σ(1000) =
24 − 1
2 − 1

· 54 − 1
5 − 1

= 2340

There is an intimate relation between perfect numbers and Mersenne primes: half of it indeed ap-
pears in Euclid’s Elements.

Theorem 5.14. If 2p − 1 is a Mersenne prime, then 2p−1(2p − 1) is perfect.

Proof. Suppose that Mp = 2p − 1 is a Mersenne prime. Since 2p − 1 is prime,

σ(Mp) = σ(2p−1)σ(2p − 1) =
2p − 1
2 − 1

· (2p − 1 + 1) = 2 · 2p−1(2p − 1) = 2Mp
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For small values of p we have the following table: the numbers increase very quickly!

p 2p − 1 n = 2p−1(2p − 1)
2 3 6 = 1 + 2 + 3
3 7 28 = 1 + 2 + 4 + 7 + 14
5 31 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248
7 127 8128 = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064
13 8191 33,550,336
17 131,072 8,589,869,056

It was conjectured in the middle ages and proved in the 1700’s that all even perfect numbers have this
form.

Theorem 5.15 (Euler). Every even perfect number has the form 2p−1(2p − 1) for some Mersenne
prime Mp = 2p − 1.

Proof. Suppose that n = 2km is an even perfect number, where k ≥ 1 and m is odd. Our goal is to
prove that m is prime; we will do this by showing that σ(m) = m + 1.
Since n is perfect and gcd(2k, m) = 1, we have two expressions for σ(n):

σ(n) =

{
2n = 2k+1m
σ(2k)σ(m) = (2k+1 − 1)σ(m)

=⇒ (2k+1 − 1)σ(m) = 2k+1m

Since 2k+1 − 1 is odd, we see that 2k+1 | σ(m) so that σ(m) = 2k+1α for some α ∈ N. We now have

(2k+1 − 1)α = m

If we can show that α = 1 then we are finished: in such a case

σ(m) = 2k+1 = (2k+1 − 1) + 1 = m + 1

whence m is prime.
To obtain a contradiction, assume that α > 1. Then m is divisible by the distinct divisors 1, α, m. But
then

2k+1α = σ(m) ≥ 1 + α + m = 1 + α + (2k+1 − 1)α = 1 + 2k+1α

Contradiction!
We conclude that m = 2k+1 − 1 is prime. By Theorem 5.9 we see that k + 1 = p must also be prime,
whence m = Mp is a Mersenne prime.

Since only fifty-one Mersenne primes have thus far been discovered, only fifty-one perfect numbers
are known to exist, with the currently known largest having 49,724,095 digits! Of course the con-
jectured infinity of Mersenne primes would also imply the existence of infinitely many even perfect
numbers. It remains unknown whether there are any odd perfect numbers.
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Exercises 5.2 1. Prove that p is prime if and only if σ(p) = p + 1.

2. Suppose that Mp = 2p − 1 is a Mersenne prime. List all the divisors of 2p−1(2p − 1) and use
the geometric sequence formula to explicitly sum them. Hence provide a more explicit proof of
Theorem 5.14.

3. Define τ(n) to be the number of positive divisors of n. Prove that τ is multiplicative and find
a formula for τ(n) in terms of the prime decomposition of n = pµ1

1 · · · pµk
k . Hence or otherwise,

find the number of positive divisors of 1,000,000.

4. If an + 1 is prime for some integers a ≥ 2 and n ≥ 1, show that n must be a power of 2.

(Hints: if n is odd, show that (a + 1) | (an + 1) similarly to the proof of Theorem 5.14. Then write
n = 2m, a2 = b and repeat. . . )

5. Primes of the form Fk = 22k
+ 1 are called Fermat primes.3 For instance

F1 = 5, F2 = 17, F3 = 257, F4 = 65537

(a) If k ≥ 2, prove that the final digit of Fk is 7.
(Hint: Think modulo 2 and 5. What is the period of 2m modulo 5?)

(b) Show that if k ̸= m, then Fk and Fm are coprime.
(Hint: if k > m, show that Fm divides Fk − 2)

6. Suppose n |Mp where p is an odd prime. Prove that n = 2kp + 1 for some integer k.

(Hint: if q is a prime divisor of 2p − 1, think about why p should divide q − 1)

The remaining questions consider the potential impossibility of odd perfect numbers.

7. (a) Show that a power of 3 can never be a perfect number.

(b) More generally, if p is an odd prime, show that pk is not perfect.

8. (a) Show that a number of the form 3i5j can never be perfect.

(b) More generally, if p ≥ 5 is an odd prime, show that the product 3i pj can never be perfect.

(c) Even more generally, show that if p and q are distinct odd primes, then a number of the
form qi pj can never be perfect.

9. (Hard) Show that 3i5j7k is never perfect.

(Hint: consider σ(n) and sums 1 + 3 + 32 + · · · , etc. modulo 4, then think modulo 5)

3Fermat thought that all the Fk might be prime, however Euler (1732) and Clausen/Landry (1855/1880) successively
showed that F5 and F6 are composite with prime factorizations:

F5 = 4,294,967,297 = 641 · 6700417, F6 = 18,446,744,073,709,551,617 = 274,177 · 67,280,421,310,721

These were incredible achievements for the time. As of 2022, no other Fermat primes have been discovered, and only up
to F11 has been completely factored! A distributed computing project similar to GIMPS continues the search. . .
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