
6 Powers and Roots in Zn

6.1 Successive Squaring and kth Roots

In this chapter, we flesh out two contrasting ideas: Powers are easy, roots (and factorization) are hard.

Example 6.1. To compute 14217 (mod 67), we currently have a couple of options:

1. Reduce the problem via Euler/Fermat 14217 ≡ 143·66+19 ≡ 1419 (mod 67).

2. Hunt for a small power of 14 which has small remainder modulo 67. This could take a while!

For large moduli, these options become markedly less attractive! Instead we try a more systematic
approach where we repeatedly compute squares:

142 ≡ 196 ≡ −5 =⇒ 144 ≡ (−5)2 ≡ 25

=⇒ 148 ≡ 252 ≡ 625 ≡ 22

=⇒ 1416 ≡ 222 ≡ 484 ≡ 15 (mod 67)

Each squaring was easy, and by considering the binary decomposition 19 = 16+ 2+ 1 = 24 + 21 + 20

of the exponent, we now have enough information to compute the answer:

1419 ≡ 1416+2+1 ≡ 15 · (−5) · 14 ≡ 22 (mod 67)

Successive Squaring Algorithm to compute ak (mod m)

1. Take the binary decomposition k = 2r + 2r−1µr−1 + · · ·+ 2µ1 + µ0 where each µj = 0, 1.

2. Repeatedly square modulo m: compute Aj ≡ a2j ≡ A2
j−1 (mod m)

3. Compute ak ≡ Ar Aµr−1
r−1 · · · Aµ0

0 · · · (mod m).

Example 6.2. We compute 673 (mod 25) using the successive squaring algorithm:

1. 73 = 64 + 8 + 1 = 26 + 23 + 20.

2. Starting with A0 = a = 6 we square:

A1 ≡ 62 ≡ 35 ≡ 11 =⇒ A2 ≡ 112 ≡ 121 ≡ −4

=⇒ A3 ≡ (−4)2 ≡ 16 ≡ −9

=⇒ A4 ≡ 162 ≡ 256 ≡ 6 ≡ A0

=⇒ A5 ≡ A1 ≡ 11, A6 ≡ A1 ≡ −4

Notice how the pattern repeats once we reach A4 ≡ A0.

3. 673 ≡ A6A3A0 ≡ (−4) · (−9) · 6 ≡ 16 (mod 25).

For more speed, we could have started with Euler’s Theorem: φ(25) = 5 · 4 = 20, whence

673 ≡ (620)3 · 613 ≡ 623+22+20 ≡ A3A2A0 ≡ (−9) · (−4) · 6 ≡ 16 (mod 25)

However, considering how the original list started repeating, this didn’t save us much time.

1

Efficiency While tedious to perform by hand, the algorithm is very efficient for a computer: this is
what we mean by powers are easy.

• The binary expansion of k = µ0 + 2µ1 + 22µ2 + · · ·+ 2r has r + 1 terms if and only if

2r ≤ k < 2r+1 ⇐⇒ r ≤ log2 k < r + 1

This is likely the form in which the computer stores k already!

• Squaring and computing each Aj and the product Aµ0
0 · · · Ar requires r + 1 take the remainder

calculations.

• The algorithm therefore requires approximately log2 k remainder steps to complete; roughly 3.3
times number of digits of k.

• There are many algorithms available for taking the remainder: these are roughly about as effi-
cient as multiplying, so the full algorithm is very efficient indeed!

Slightly faster algorithms even than this are available; even when x, k, m are 100’s of digits long, a
modern computer can evaluate xk (mod b) in microseconds. To really stress a computer, we need
much larger exponents! Here are a few benchmarking times1 where x = 1389 + 1 and m = 1781 + 3
are 100-digit numbers.

27 µs: x10100 ≡ 2811368376719703263528063091846551559031253759668873958264247724126725739585183812656683304446721416

17 ms: x10100,000 ≡ 4488975456548368803859052207045919909802116591225720977576091772560693617724591244737588457285087356

174 ms: x101,000,000 ≡ 892615982890619665980610534874493547494556817553720182073417194047142550414087154521448828227415676

1.78 s: x1010,000,000 ≡ 2225414932073741734978750203003783867698573600388509903995387020623239040547081286262846393211045316

17.7 s: x10100,000,000 ≡ 3349869250081483676357258995295278747886045025380645413804988720714016105105145445830489542782366876

Note how the computing time is roughly proportional to the number of digits in the exponent: each
calculation (100000 → 1 million → 10 million → 100 million digits) takes approximately 10 times as
long as the previous.

Computing kth roots modulo m

The contrasting problem of finding kth roots is much harder, in that computers cannot do it efficiently.
Again we motivate via an example.

Example 6.3. Solve the congruence x5 ≡ 7 (mod 26): that is, find the 5th roots of 7 modulo 26.

• First note that gcd(7, 26) = 1 and that any solution x must therefore be a unit:

d | x and d |26 =⇒ d |7 =⇒ d = 1 =⇒ gcd(x, 26) = 1

• By Euler’s Theorem: xφ(26) ≡ x12 ≡ 1 (mod 26).

• Now hunt for a multiple of 5 which is congruent to 1 modulo φ(m) = 12. In this case

52 = 25 = 2φ(26) + 1 =⇒ x ≡ x1+2φ(26) ≡ x25 ≡ 75 ≡ 11 (mod 26)

In the last step we may appeal to successive squaring to compute 75 or simply hack at it. . .

1These times were obtained running Sage on a single core of an Intel i5-9600K desktop CPU, clocked at 4.4 GHz.

2

We lucked out in the example: the final step relied on being able to solve the congruence

5u ≡ 1 (mod 12)

which we know we can do because gcd(5, 12) = 1. When trying to take kth roots in general, this step
may not be possible. At least we have identified the critical ingredient necessary for being able to
find a unique kth root.

Theorem 6.4. Suppose that gcd(b, m) = gcd
(
k, φ(m)

)
= 1. Then the congruence equation xk ≡ b

(mod m) has a unique solution, which can be found as follows:

1. Compute φ(m).

2. Find u ∈ N such that ku ≡ 1 (mod φ(m)).

3. Evaluate x ≡ bu (mod m).

Proof. First observe that any purported solution x must be a unit (gcd(x, m) = 1): if not, then b ≡ xk

and m would have a common divisor greater than 1, contradicting our assumptions.
Step 2 is possible since gcd

(
k, φ(m)

)
= 1; we can therefore write ku = 1 + λφ(m) for some λ ∈ N.

Since any suitable x is a unit, we can now apply Euler’s Theorem

bu ≡ (xk)u ≡ x1+λφ(m) ≡ x (mod m)

Uniqueness is clear since we found x ≡ bu by doing the same thing (raising to the power u) to both
sides of the congruence xk ≡ b (mod m).

Example 6.5. Find the unique solution to x283 ≡ 29 (mod 42)
We trivially verify that gcd(29, 42) = 1 and φ(42) = 12. We therefore need to solve

283u ≡ 1 (mod 12)

This is straightforward, since 283 ≡ 7 (mod 12), we easily spot that u ≡ 7 is a solution.a Now
compute

x283 ≡ 29 =⇒ x283·7 ≡ 297 (mod 42)

=⇒ x ≡ x1+165φ(42) ≡ 297 (mod 42)

It remains to compute the final power: applying the successive squaring algorithm, we have 7 =
20 + 21 + 22, and

A0 = 29, A1 = 292 = 169 = 1, A2 = 1

whence

x ≡ 297 ≡ 29 · 1 · 1 ≡ 29 (mod 42)
aIf this makes you nervous, use the Euclidean algorithm to solve 7u = 1 + 12λ, or indeed 283 = 1 + 12λ:

283 = 12 · 23 + 7
12 = 7 · 1 + 5

7 = 5 · 1 + 2
5 = 2 · 2 + 1

 =⇒ gcd(283, 12) = 1 = 12 · 118 − 283 · 5 =⇒ 283 · 7 = 1 + 12 · 165

where we reversed the algorithm to obtain the final result.

3

Efficiency Even when a unique kth root exists, finding it is typically much slower than computing
a kth power. Comparing the steps in Theorem 6.4:

1. Computing φ(m) is very, very slow; you essentially need to factorize m.

2. The Euclidean algorithm is fast to implement.

3. This can be done using successive squaring; also fast.

When m is large the discrepancy in computing speeds becomes enormous.
The same modern desktop considered earlier took 216 seconds to factorize the 100-digit base dis-
cussed previously:

1781 + 3 = 22×5×107×20381297×5040257978377×104871651613718213326855552979737×201189896476403174943819047900047481422801171

This example isn’t ideal since if a large number is lucky enough to be divisible by several small
primes, it can often be factorized very quickly. For a more sensible benchmark, here are the times
taken by the computer to factorize several semiprimes pq, where the primes p, q were of comparable
size.

pq digits 60 62 64 66 68 70 72 74 76 78 80
Factorization time (s) 6.58 6.46 13.6 22.9 33.5 37.3 65.8 124 151 350 694

When the factorization time is graphed logarithmically, the
data appears linear. The best-fitting straight line therefore
represents an exponential model:

T(n) ≈ exp(0.2297n − 12.1665)

By this metric, we might expect that factoring a 100-digit
semiprime would require 13 1

2 hours, a 150-digit semiprime
150 years!

100

101

102

103
tim

e
(s

)

60 64 68 72 76 80
pq digits

Non-unique kth roots It is reasonable to ask what can happen in when either or both of the con-
ditions gcd(b, m) = 1 = gcd

(
k, φ(m)

)
= 1 fails. The short answer is that anything is possible; you

could have no kth root, a unique root, or several roots. Some of the details are in the exercises.

Example 6.6. Modulo 6, we have gcd(φ(6), 4) = 2 ̸= 1. By computing fourth powers modulo 6:

x 0 1 2 3 4 5
x4 0 1 4 3 4 1

we see that the congruence x4 ≡ b (mod 6) has a unique solution if b = 0, 3, two solutions if b = 1, 4,
and no solutions if b = 2, 5.

4

Exercises 6.1 1. Use the method of successive squaring to compute each of the following:

(a) 513 (mod 23) (b) 12260 (mod 1000) (c) 28749 (mod 1147)

(Use a calculator!)

2. For each congruence, verify the hypotheses of the Theorem 6.4 and solve the congruences:

(a) x83 ≡ 15 (mod 322) (b) x329 ≡ 452 (mod 1147)

3. We search for kth roots of b modulo m in situations where at least one of the standard conditions
fails:

gcd(b, m) ̸= 1 or gcd
(
k, φ(m)

)
̸= 1 (∗)

(a) If p is an odd prime, show that 1 has exactly two square-roots modulo p. Which of the
conditions (∗) fails in this case?

(b) Investigate the cube-roots of b modulo 8 for each remainder b (see, e.g., Example 6.6). How
many such b have a cube-root? Are they unique? What do the gcd conditions (∗) say in
each case? When could we have used the theorem on unique kth roots?

(c) Repeat for the fourth-roots of b modulo 8.

(d) Repeat for the cube-roots of b modulo 10.

5

6.2 The RSA Cryptosystem

Perhaps the modern-world’s most utilised cryptosystem, it is likely that you (indirectly) use some
version of RSA2 every day, when your phone or computer connects securely to another, for instance
using https. Here is how the method works.

Encoding 1. Start with distinct primes p, q and build the semiprime m = pq.

2. Calculate φ(m) = (p − 1)(q − 1).

3. Choose an integer s such that 1 < s < φ(m) and gcd
(
s, φ(m)

)
= 1.

4. Encode a numerical message by mapping x 7→ xs (mod m).

Decoding This is based on the following.

Theorem 6.7. Let u ∈ N satisfy us ≡ 1 (mod φ(m)). Then, for all x, (xs)u ≡ x (mod m).

Proof. Since m = pq is a semiprime, we have

xsu ≡ x (mod m) ⇐⇒
{

xsu ≡ x (mod p), and
xsu ≡ x (mod q)

Since su ≡ 1 (mod φ(m)) we see that su = 1 + j(p − 1)(q − 1) for some j ∈ Z. If x ≡ 0 (mod p),
then Fermat’s little theorem tells us that

xsu ≡ x · (xp−1)j(q−1) ≡ x (mod p)

The result is plainly trivial if x ≡ 0, and the calculation is similar for the other modulus q.

The process is very simple: think of s for ‘scramble’ and u for ‘unscramble.’

x encode7−−−→ xs (mod m)
decode7−−−→ (xs)u ≡ x (mod m)

As we saw in the previous section, even if m, s, u are 100+ digits long, these calculations are very fast
for modern computers.
The values m, s are known as the public key: these are all you need to encode messages. Indeed these
can be made freely available so that anyone can encode.
To decode messages, one also requires the private key u. Provided you keep this number secret, only
you can decode messages sent to you.
One implementation involves a group of friends each of whom have different keys. They keep se-
cret their private keys u, but share their public keys s, m with the group. Then all friends can send
messages to each other but, once encoded, each can only be decoded by the intended recipient.

2The acronym is formed from the initials of Rivest, Shamir and Adleman who discovered the system while working at
MIT in 1977. It was in fact first described in 1973 by Clifford Cocks while working for GCHQ, the British equivalent of the
US National Security Agency. Cocks’ discovery was classified, even though, due to the lack of available computing power,
it was deemed to have no practical application.

6

Examples 6.8. 1. For a very simple example, we start by encoding a message via the obvious
substitution A 7→ 1, B 7→ 2, etc.:

I T S A L L G R E E K T O M E
9 20 19 1 12 12 7 18 5 5 11 20 15 13 5

If we choose the semiprime m = 5 × 7 = 35, then φ(m) = 4 × 6 = 24, and we can choose, say,
s = 5. We then encode by mapping x 7→ x5 (mod 35):

9 7→ 95 ≡ 812 · 9 ≡ 112 · 9 ≡ 16 · 9 ≡ 4 (mod 35)

20 7→ 205 ≡ 20 19 7→ 195 ≡ 24, 1 7→ 15 ≡ 1, . . .

resulting in the string of numbers

4, 20, 24, 1, 17, 17, 7, 23, 10, 10, 16, 20, 15, 13, 10

We could also translate the encoded message back into letters:

D, T, X, A, Q, Q, G, W, J, J, P, T, O, M, J

To decode, we require u such that 5u ≡ 1 (mod 24); that is u = 5 (it doesn’t matter for us that
this equals s!). Again compute

45 ≡ 43 · 42 ≡ 64 · 42 ≡ −6 · 42 ≡ −24 · 4 ≡ 44 ≡ 9 (mod 35)

205 ≡ 20, 245 ≡ 19, . . .

to recover the original string of numbers and message ITSALLGREEKTOME.

2. Suppose you intercept the message

59, 4, 57, 2, 82, 4, 86, 43, 4, 43, 57, 4

which you know has been encoded using the public key s = 11, m = 119. You also know that
the message may be read via the translation

11 ↔ A, 12 ↔ B, . . . , 36 ↔ Z

To crack the code, our first job is computing the totient: m = 7 × 17 =⇒ φ(m) = 6 · 16 = 96.

We now need to find the private key, which satisfies 11u ≡ 1 (mod 96). A relatively short
application of the Euclidean algorithm says that

1 = 11 · 35 − 4 · 96 =⇒ u = 35

We now compute:a

59 7→ 5935 ≡ 19 mod 119

etc. The full decode is

19, 29, 19, 30, 25, 24, 30, 18, 15, 30, 15, 29, 30

which you’re welcome to translate into letters if you’re so inclined. . .
aIf you don’t want to beg the help of a calculator, use the successive squaring algorithm: the binary decomposition is

35 = 25 + 21 + 20, which yields

A0 = 59, A1 = 30, A2 = −52, A3 = −33, A4 = 18, A5 = −33

=⇒ 5935 ≡ A5 A1 A0 ≡ −33 · 30 · 59 ≡ 19 (mod 119)

Don’t knock it: it’s what your computer has to do for every element of the code!

7

Speed and Security of the RSA system

Encoding and decoding (once in possession of the private key) require only the computation of pow-
ers modulo m. While our examples used very small moduli, modern applications use semiprimes
with 300 or more digits. While unfeasible in 1973, for modern computers such work is trivial.

Now suppose that you are in possession of the public key m, s and want to crack an encoded message.
You need to do two things:

1. Find φ(m); equivalently factorize m = pq. As we saw in the previous section, for moduli in the
300 digit range this is essentially impossible in any reasonable time-frame.3

2. Find u ∈ N such that us ≡ 1 (mod φ(m)). Employing the Euclidean algorithm requires no
more than 2 log2 φ(m) applications of the division algorithm and some back substitution. Even
for 300 digit numbers, this can be completed in microseconds provided φ(m) is known.

While resilient against general attack, RSA is not foolproof. Its main drawback is that it is a table
cipher: if 18 7→ 11 during encoding, then 18 is always mapped to 11. If a decoded message is inter-
cepted, a hacker then knows how to decode any future messages without calculation. Long messages
reduce security since common combinations such as ‘e’ and ‘the’ might be guessable if they appear
frequently. Correctly guessing even a few letters makes decoding a full message much easier. Of
course, with very large moduli perhaps the entire message can be transmitted using only one digit!
RSA can also easily be combined with other cryptographic methods for greater security.

Exercises 6.2 1. For each message and public key m, s, find the private key u and decode the
message, using 1 7→ A, 2 7→ B, etc. to translate back to letters.

(a) When m = 35 and s = 11 you receive 28, 4, 18, 18, 10, 2, 4, 14, 28, 28, 4, 2, 1, 6, 6, 10, 24

(b) When m = 143 and s = 103 you receive 63, 1, 63, 63, 12, 113, 27, 123, 63, 1, 63, 141, 141, 27, 72

2. (a) Let m = p1 · · · pn be a product of distinct primes, and assume that gcd(k, φ(m)) = 1 so
that ∃u with ku ≡ 1 (mod φ(m)). Prove that xk ≡ b (mod m) has unique solution x ≡ bu

(mod m), regardless of whether gcd(b, m) = 1.
(Hint: Carefully read the proof of Theorem 6.7)

(b) Consider the congruence x5 ≡ 6 (mod 9). Show that you can find u satisfying 5u ≡ 1
(mod φ(9)), but that x ≡ 6u is not a solution to the required congruence. Can you identify
where the distinct prime condition was needed in part (a)?

(c) Solve the congruence x49 ≡ 3 (mod 1155)

3. In Example 6.8, we saw that the public and private keys s, u were equal (both being 5). Relative
to the semiprime modulus m = 35, show that this is always the case; regardless of which s you
choose, you will always have u = s.

4. Modern implementations typically replace Euler’s totient function φ(m) = (p − 1)(q − 1) with
Λ(m) := lcm(p − 1, q − 1).

Given a public key m, s where gcd(s, Λ(m)) = 1, show that decoding may be accomplished by
finding the private key satisfying us ≡ 1 (mod Λ(m)).

3RSA Labs used to offer cash prizes for factoring large semiprimes (the RSA-numbers). As of 2020, the largest yet
factorized has 250 digits, requiring supercomputer resources equivalent to over 1000 years on a single desktop core.

8

	Powers and Roots
	Successive Squaring and kth Roots
	The RSA Cryptosystem

