
Math 180A: Homework 1

Submit the * questions by Friday 14th January

1. In this question we think about the richness of square-triangular numbers. A number is triangular
if it is the sum of the first n natural numbers. For example:

1 = 1
3 = 1 + 2
6 = 1 + 2 + 3
10 = 1 + 2 + 3 + 4

(a) Prove that a number is triangular if and only if it may be written in the form 1
2 n(n + 1)

where n is a natural number.

(b) The square numbers are those natural numbers of the form m2. A number is square-triangular
if it is both square and triangular. Certainly 1 is square-triangular. Find the next square-
triangular number.

(c) To find all square-triangular numbers m2 is equivalent to finding all integer solutions
(m, n) to the equation

m2 =
1
2

n(n + 1)

One way to proceed is as follows: certainly any n satisfying this equation is either even
or odd. Prove that finding a square-triangular number is equivalent to being able to find
integers (m, k) which solve either of the equations

m2 = k(2k + 1) or m2 = k(2k − 1)

(d) Suppose that d ∈ N is a divisor of both k and 2k + 1. Prove that d = 1.

(e) It follows from part (d) that if (m, k) solves m2 = k(2k + 1), then both k and 2k + 1 must be
perfect squares.
Prove that finding square-triangular numbers is equivalent to finding all integer solutions
(x, y) to the equations

x2 − 2y2 = ±1

(f) Using a spreadsheet or by writing a computer program, you should be able to find the first
few pairs of solutions (x, y) to these equations. Hence find the first five square-triangular
numbers.
(Hint: try computing

√
2y2 ± 1 for y = 1, 2, 3, 4, . . . and spotting when this is an integer. . . )

The equation x2 − 2y2 = 1 is an example of Pell’s equation. The solutions of this famous equation
are related to all manner of fun things such as continued fractions and rational approximations
to

√
2. For example (99, 70) is a solution and 99

70 = 1.4142857 . . . ≈
√

2. We shall see how to
find the infinitely many solutions to Pell’s equation in Math 180B, and hence find all the square-
triangular numbers.
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2. * Try this alternative approach to finding all primitive Pythagorean triples (x, y, z) where y is
even. Let ŷ = 1

2 y. Then

ŷ2 =
1
4

y2 =
1
4
(z2 − x2) =

z − x
2

· z + x
2

.

This RHS is the product of two integers, since x, z are both odd.

(a) Explain why z−x
2 and z+x

2 have no common factors.

Continuing the argument: ŷ2 is a perfect square, and since they are relatively prime, z−x
2 , z+x

2
must also be perfect squares. Define positive integers u, v by1

u2 =
1
2
(z + x), v2 =

1
2
(z − x).

(b) Find x, y and z in terms of u and v.

(c) Argue that u and v have no common factor and that both cannot be odd.

(d) Compare with the solution given in lectures: what are s and t in terms of u and v.

3. Try adding up the first few odd numbers and see if the numbers you get satisfy some sort of
pattern. Once you find the pattern, express it as a formula. Can you find a geometric verificia-
tion that your formula is correct?
(Hint: How might you create a square with n + 1 dots per side from a square with n dots per side?)

4. * The consecutive odd numbers 3, 5, and 7 are all primes. Are there infinitely many such “prime
triplets”? That is, are there infinitely many prime numbers p such that p + 2 and p + 4 are also
prime?

5. * (a) We showed that in any primitive Pythagorean triple (a, b, c), either a or b is even. Use the
same sort of argument to show that either a or b must be a multiple of 3.

(b) By examining a list of primitive Pythagorean triples, make a guess about when a, b or c is
a multiple of 5. Try to show that your guess is correct.

6. * Let m and n be positive integers that differ by 2, and write the sum 1
m + 1

n as a fraction in
lowest terms. For example 1

2 +
1
4 = 3

4 , and 1
3 +

1
5 = 8

15 .

(a) Compute the next three examples.

(b) Examine the numerators and denominators of the fractions in (a) and compare them with
a table of primitive Pythagorean triples. Formulate a conjecture about such fractions.

(c) Prove that your conjecture is correct.
(Hint: m − 1 and m + 1 differ by 2. . . )

7. * (a) Use the lines through the point (1, 1) to describe all the points of the circle x2 + y2 = 2
whose co-ordinates are rational numbers.

(b) What goes wrong if you try to apply the same procedure to find all the points on the circle
x2 + y2 = 3 with rational co-ordinates?

1Note that z > x automatically so v2 > 0.
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8. (a) Consider a general cubic polynomial equation

(x − a)(x − b)(x − c) = x3 + p2x2 + p1x + p0 = 0

where a, b, c are the roots. Prove that if the coefficients p0, . . . , p2 are rational numbers and
that two of the roots are rational, then so is the third root.

(b) The curve y2 = x3 + 8 contains the points (1,−3) and (− 7
4 , 13

8 ). The line through these two
points intersects the curve in exactly one other point. Find it.
Your calculation in part (a) should help.
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