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1 Introduction

In this section1 we motivate the study of number theory via some classic problems, and investigate
the familiar Pythagorean triples.
While modern number theory has many applications and invokes a wide array of techniques from
across mathematics, at its heart it is concerned with the integers and with integer solutions to equa-
tions: these are called Diophantine Equations in honor of Diophantus of Alexandria, a Greek Math-
ematician of the 3rd century CE, and one of the fathers of number theory. Here are some classic
problems and examples; some at least should be familiar to you.

1. Find all the integer points (x, y) on the line 3x − 2y = 1. The answer is (x, y) = (1 + 2n, 1 + 3n)
where n ∈ Z. Can you prove right now that these are all the solutions?

2. If n is an odd integer then n2 − 1 is a multiple of 8.

3. Find all Pythagorean triples: positive integers x, y, z such that x2 + y2 = z2.

4. Prime numbers: if n is prime, what is the next prime? Is there a formula for the nth prime? Is
n2 + n + 41 always prime whenever n is an integer?

5. Which integers can be written as the sums of two squares? Three? Four?

6. Fermat’s Last Theorem:2 if n ≥ 3 is an integer, then there are no positive integers x, y, z such
that xn + yn = zn.

1.1 Notation & Divisibility

To orient ourselves, we start by standardizing notation for our sets of interest.

Natural Numbers: N = {1, 2, 3, 4, . . .}
Whole Numbers: N0 = {0, 1, 2, 3, . . .}
Integers: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
Rational Numbers: Q = {m

n : m ∈ Z, n ∈ N}

The real numbers R and complex numbers C will not play much role in this class.

1Corresponds roughly to § 1–3 in the textbook: A Friendly Introduction to Number Theory, Joseph H. Silverman, 4th ed.
2Historical note: In 1637 Pierre de Fermat left a note in the margin of a copy of Diophantus’ Arithmetica famously

claiming to have proved his ‘theorem.’ A complete proof took mathematicians another three and a half centuries. . .



Divisibility in the integers

After years of calculus, restricting oneself to the integers can feel alien. The fundamental difficulty is
that division is often impossible: e.g. 7 ÷ 4 = 7

4 is not an integer! In algebraic language the integers
fail to be closed under division and form merely a ring, not a field like the rational or real numbers.
Our first order of business is to identify those pairs of integers for which division is permitted.

Definition 1.1. Let m, n ∈ Z. We say that m divides n, and write m |n, if

∃k ∈ Z such that n = km

We also say that m is a divisor or factor of n.
A common divisor/factor of two integers x, y is any (positive) integer d such that d | x and d | y. We say
that x, y are relatively prime or coprimea if the only positive common factor is 1.

aColloquially, “x, y have no common factors.”

Examples 1.2. 1. By taking k = 3 in the definition, we see that 4 |12 (that is 12 = 3 · 4).

2. By contrast, 7 ∤9 since ∄k ∈ Z such that 9 = 7k.

3. For every m ∈ Z we have m | 0, since 0 = 0m (i.e. k = 0 works in the definition!). This includes
the counterintuitive fact that 0 |0.

4. The common divisors of x = 18 and y = 12 are 1, 2, 3 and 6.

5. −16 and 27 are relatively prime.

A few observations and tips are in order concerning the definition.

• For brevity, the word positive is usually omitted when discussing (common) divisors. For in-
stance, in Example 4 above, −2 plainly divides both 18 and 12.

• It would be tempting to say that m divides n if and only if n
m is an integer but this is incorrect:

– Certainly n
m ∈ Z =⇒ m |n is true (take k = n

m ).

– The converse is false; 0 |0 is the sole counter-example.

More philosophically, since divisibility is solely a property of the integers, it is cleaner not to
introduce rational numbers into the discussion.

• Keep the line vertical! m | n is a proposition (a statement which is either true or false), whereas
m/n = m

n is (usually) a rational number. Some version of the following is a very common
mistake:

m |n↭ m/n↭
m
n

∈ Z

Not only are we confusing propositions with numbers, but in the context of the previous ob-
servation, the resulting fraction is upside-down!
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Exercises 1.1 The exercises in this chapter are to be treated informally. Rigorous arguments might
require some facts about integers with which you’re only somewhat familiar (e.g. prime factorization)
but that we’ll develop properly in future chapters. The point is to investigate and to play.

1. An integer is triangular if it is the sum of the first n natural numbers. For example:

1 = 1
3 = 1 + 2
6 = 1 + 2 + 3
10 = 1 + 2 + 3 + 4

(a) Prove that a number is triangular if and only if it may be written in the form 1
2 n(n + 1)

where n is a natural number.
(b) A number is square-triangular if it is both square (= m2) and triangular. Certainly 1 is

square-triangular. Find the next square-triangular number.
(c) Finding all square-triangular numbers m2 is equivalent to finding all integer solutions

(m, n) to the equation

m2 =
1
2

n(n + 1)

Prove that this is equivalent to finding integers (m, k) such that

m2 = k(2k + 1) or m2 = k(2k − 1)

(Hint: n is either even or odd. . . )
(d) Suppose that d ∈ N is a divisor/factor of both k and 2k + 1. Explain why d = 1.
(e) By part (d), if (m, k) solves m2 = k(2k + 1), then both k and 2k + 1 are perfect squares.

Prove that finding square-triangular numbers is equivalent to finding all integer solutions
(x, y) to the equationsa

x2 − 2y2 = ±1

(f) Find the first few pairs of solutions (x, y) to these equations and therefore find the first five
square-triangular numbers.
(Hint: This is easier with a spreadsheet or by writing some computer code. Try evaluating√

2y2 ± 1 for y = 1, 2, 3, 4, . . . and spotting when this is an integer.)

2. Try summing the first few odd numbers and see if the results satisfy some pattern. Once you
find the pattern, express it algebraically. Can you find a geometric verification that your formula
is correct?

(Hint: How can you create a square with n + 1 dots per side from a square with n dots per side?)

3. The consecutive odd numbers 3, 5, and 7 are all primes. Are there infinitely many such prime
triplets? That is, are there infinitely many prime numbers p such that p + 2 and p + 4 are also
prime?

aThe equation x2 − 2y2 = 1 is an example of Pell’s equation, the solutions of which are related to fun things such as
continued fractions and rational approximations to

√
2. For example (99, 70) is a solution and 99

70 = 1.4142857 . . . ≈
√

2.
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1.2 Pythagorean Triples

We consider positive integers x, y, z for which x2 + y2 = z2. It is easy to find many:

1. Take a known triple, e.g. (3, 4, 5), and multiply by a constant. Thus (3n)2 + (4n)2 = (5n)2 for
any n ∈ N. We immediately have infinitely many triples.

2. Use a spreadsheet or computer program: generate pairs (x, y) of integers, take the square-root
of x2 + y2, and test whether this is an integer. The following snippets (loosely C++/Python) do
exactly this3 returning all Pythagorean triples with x, y ≤ 100.
for(int x=1; x<=100; ++x)

{for(int y=x; y<=100; ++y)

{real z=sqrt(x^2+y^2);

if(z-floor(z)==0){write(x,y,z);}

}

}

for x in range (1,101):

for y in range (x,101):

z=sqrt(x^2+y^2);

if z-floor(z)==0:

print(x,y,z);

We need a different approach if we want to describe all triples. First we reduce the problem a little.

Definition 1.3. A Pythagorean triple (x, y, z) is primitive if no pair of x, y, z has a common factor.

For instance (3, 4, 5) is primitive, while (6, 8, 10) is not. We now state some basic results that help
narrow our search:

Lemma 1.4. Suppose that (x, y, z) is a Pythagorean triple.

1. If any pair of x, y, z have a common factor, the third shares this factor.

2. All non-primitive triples are a common multiple of a primitive triple.

3. If (x, y, z) is primitive, then z is odd.

Proof. 1. Suppose WLOG that d is a common divisor of x, y. Then d2 | z2 and so4that d | z.

2. If (x, y, z) is non-primitive, then some pair has a common divisor, which divides all three by
part 1. Divide x, y, z by their greatest common factor d to obtain the primitive triple ( x

d , y
d , z

d ).

3. If (x, y, z) is primitive, then at most one of x, y, z can be even. Moreover, they cannot all be odd,
since odd + odd ̸= odd.

If z = 2m were even, then x = 2k + 1 and y = 2l + 1 are both odd. But then

4m2 = z2 = x2 + y2 = (2k + 1)2 + (2l + 1)2 = 4(k2 + l2 + k + l) + 2.

The right hand side is not divisible by 4, so we have a contradiction.

3This is inefficient but is fine for an initial investigation. If you want to play with it, try entering the C version into the
Asymptote Web Application, or the Python into a Sage Cell. A more efficient algorithm might be based on Theorem 1.5.

4That d2 | z2 =⇒ d | z is not as obvious as it may seem: it requires unique prime factorization (later).
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To summarize the Lemma, it is enough for us to find all primitive Pythagorean triples (x, y, z) where
x, z are odd and y is even. In such a situation, we start by factorizing:

x2 = z2 − y2 = (z + y)(z − y)

Suppose that z + y and z − y had a common factor d: plainly d is odd, since both z ± y are odd. Then
∃a, b ∈ Z for which{

z + y = ad
z − y = bd

=⇒
{

2z = (a + b)d
2y = (a − b)d

Since d is odd, it must be a common divisor of both y and z: since (x, y, z) is primitive, d = 1.
It now follows5 that z + y and z − y are both perfect squares: write

z + y = s2, z − y = t2

and solve for y, z and x = st. Again, s, t are relatively prime for otherwise y, z would have a common
factor. They must also plainly both be odd. Finally, it is worth checking that the expressions we’ve
found really do provide a triple:

(st)2 +

(
s2 − t2

2

)2

= s2t2 +
s4 + t4 − 2s2t2

4
=

s4 + t4 + 2s2t2

4
=

(
s2 + t2

2

)2

We have therefore proved the main classification result.

Theorem 1.5. (x, y, z) is a primitive triple with x odd and y even if and only if then there exist odd
coprime integers s > t ≥ 1 such that

x = st, y =
s2 − t2

2
, z =

s2 + t2

2

All Pythagorean triples are simply multiples of these or result from switching the order of x, y.

Examples 1.6. 1. Take s = 9, t = 5 to obtain the primitive triple (45, 28, 53).

2. The non-primitive triple (160, 168, 232) has common divisor d = 8 and is therefore 8 times the
primitive triple (20, 21, 29). This has x even and so we compute

s =
√

z + x =
√

49 = 7, t =
√

z − x =
√

9 = 3

Putting it together, we obtain the representation

(160, 168, 232) = 8
(

s2 − t2

2
, st,

s2 + t2

2

)
= 8

(
72 − 32

2
, 7 · 3,

72 + 32

2

)
Other descriptions of the Pythagorean triples are available: see e.g. Exercise 2.

5This again requires unique factorization. If p is a prime factor of x, then p2 | x2. Both factors of p must divide either
z + y or z − y, since these are coprime. Now repeat with all primes dividing x. . .
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Exercises 1.2 1. (a) We showed that for any primitive Pythagorean triple (x, y, z), either x or y
must be even. Use a similar argument to prove that either x or y must be a multiple of 3.

(Hint: what remainders can squares have after dividing by three?)

(b) By examining a list of primitive Pythagorean triples, make a guess about when x, y or z is
a multiple of 5. Try to show that your guess is correct.

2. Try this alternative approach to finding all primitive Pythagorean triples (x, y, z) where y is
even. Let ŷ = 1

2 y. Then

ŷ2 =
1
4

y2 =
1
4
(z2 − x2) =

z − x
2

· z + x
2

The right side is the product of two coprime integers, which must therefore both be perfect
squares. Define positive integers u, v by

u2 =
1
2
(z + x), v2 =

1
2
(z − x)

(a) Explain why z−x
2 and z+x

2 are coprime integers.

(b) Find x, y and z in terms of u and v.

(c) Argue that u and v have no common factor and that precisely one must be even.

(d) Compare with the solution in Theorem 1.5: how do s and t relate to u and v?

3. Let m ≥ 2 be an integer and write the sum 1
m−1 +

1
m+1 as a fraction in lowest terms. For example

1
1 +

1
3 = 4

3 , 1
2 +

1
4 = 3

4 , and 1
3 +

1
5 = 8

15 .

(a) Compute the next three examples.

(b) Examine the numerators and denominators of the fractions in (a) and compare them with
a table of primitive Pythagorean triples. Formulate a conjecture about such fractions.

(c) Prove that your conjecture is correct.
(Hint: m − 1 and m + 1 differ by 2. . . )
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1.3 Pythagorean Triples and the Unit Circle

The previous discussion of Pythagorean triples was algebraic. Now we introduce a little geometry.
If (x, y, z) is a (primitive) Pythagorean triple, observe that

x2 + y2 = z2 =⇒
( x

z

)2
+

(y
z

)2
= 1

whence ( x
z , y

z ) is a rational point (point with rational co-ordinates) on the unit circle.
Conversely, suppose that α and β are positive rational numbers such that α2 + β2 = 1. Write α, β in
lowest terms over the smallest common denominator: i.e.

(α, β) =
( x

z
,

y
z

)
where z is the smallest positive integer for which this is possible. Now observe that( x

z

)2
+

(y
z

)2
= 1 =⇒ x2 + y2 = z2

so that (x, y, z) is a Pythagorean triple! More is true, if (x, y, z) were non-primitive, then all three
would be divisible by some d ≥ 2 thus contradicting the minimality of z. To summarize:

Theorem 1.7. 1. If (x, y, z) is a primitive Pythagorean triple, then ( x
z , y

z ) is a rational point in the
first quadrant of the unit circle.

2. If (α, β) is a rational point in the first quadrant of the unit circle with α, β in lowest terms, then
α = x

z and β = y
z where (x, y, z) is a primitive Pythagorean triple.

We could now use Theorem 1.5, to obtain an expression for the rational points on the circle. Instead,
we start with the circle and work geometrically. . .
Suppose P = (α, β) is a point on the unit circle with rational
co-ordinates. Provided α ̸= 0, the line joining P to the south
pole S = (0,−1) has rational gradient

y = mx − 1 where m =
β + 1

α
∈ Q

By substituting y = mx − 1 into the equation for the circle,
x2 + y2 = 1 we obtain a relationship between P and m:

x2 + m2x2 − 2mx + 1 = 1 =⇒ x[(m2 + 1)x − 2m] = 0

=⇒ x = 0,
2m

m2 + 1
S = (0,−1)

N

y = mx − 1

P = (α, β)

Plainly x = 0 corresponds to S = (0,−1), while the other solution yields the second intersection P:

y = mx − 1 =
2m2

m2 + 1
− 1⇝ P = (α, β) =

(
2m

m2 + 1
,

m2 − 1
m2 + 1

)
The correspondence is in fact tighter: if m = 0, we recover S = (0,−1), while6 m = ∞ results in the
north pole N = (0, 1). We have therefore proved:

6Take limits lim
m→∞

(x, y) = (0, 1).
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Theorem 1.8. The extended rational numbers Q ∪ {∞} are in bijective correspondence with the
rational points (α, β) on the unit circle:

m 7→ (α, β) =

(
2m

m2 + 1
,

m2 − 1
m2 + 1

)
where m is the gradient of the line joining the south pole (0,−1) with (α, β).

Example 1.9. The above picture shows the line with gradient m = 14
3 , which generates the point

P =
( 28

3
196
9 +1

,
196
9 −1

196
9 +1

)
= ( 84

205 , 187
205 ). Note that (84, 187, 205) is a primitive Pythagorean triple.

This method may also be applied to other quadratic curves.

Corollary 1.10. Suppose C is a quadratic curve in the plane whose equation has rational coefficients

ax2 + bxy + cy2 + dx + ey + f = 0 where a, b, c, d, e, f ∈ Q

and on which lies a rational point S. Then all rational points on C may be found by drawing a line
through S which is either vertical or has rational gradient and intersecting it with C.

Example 1.11. To find all rational points on the hyperbola x(y + x) = 3, we start by choosing the
rational point S = (1, 2). The line through S with gradient m has equation

y = m(x − 1) + 2

Substituting into the original curve, we obtain

(m + 1)x2 + (2 − m)x − 3 = 0
=⇒ (x − 1)[(m + 1)x + 3] = 0

=⇒ x = 1,− 3
m + 1

It follows that all rational points on the hyperbola are given by

(x, y) =
(
− 3

m + 1
,

2 − 2m − m2

m + 1

)
: m ∈ Q \ {−1}

In this case, m = −4 returns the base point S.

−3

−2

−1

1

2

3y

−3 −2 −1 1 2 3
x

S

P

The line with gradient m = −1 and the vertical line (m = ∞) do not yield solutions: this is geomet-
rically clear since they are parallel to the asymptotes of hyperbola. A full discussion of the problem
requires an introduction to projective geometry, in which it can be seen that the lines intersect the
hyperbola in so-called ideal points at infinity. The details are a matter for another course.

Hopefully these introductory discussions convince you of the variety of approaches that may be re-
quired in number theory. It is now time to begin a thorough discussion of the integers, of divisibility,
and particularly the prime numbers.
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Exercises 1.3 1. (a) Use lines through the point (1, 1) to describe all points of the circle x2 + y2 = 2
whose co-ordinates are rational numbers.

(b) (Harder) Repeat part (a) for the conic with equation x2 − xy − 3y2 = −1 and initial point
(2, 1).
(Hint: remember that there’s another point with x = 2. . . )

2. Suppose you attempt to apply the same procedure to find all rational points on the circle x2 +
y2 = 3. What goes wrong?

(Hint: If x, y are rational, write both as fractions over the same denominator. . . )

3. (a) Consider a general cubic polynomial equation

(x − a)(x − b)(x − c) = x3 + p2x2 + p1x + p0 = 0

where a, b, c are the roots. Prove that if the coefficients p0, . . . , p2 are rational numbers and
that two of the roots are rational, then so is the third root.

(b) The curve y2 = x3 + 8 contains the points (1,−3) and (− 7
4 , 13

8 ). The line through these two
points intersects the curve in exactly one other point. Use part (a) to help you find it.

The numbers are a little tricky, but persevere: this generalization of the line-intersection method to
cubic curves is particularly important with regard to the construction of addition on elliptic curves,
a central topic in modern number theory.
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2 Divisibility, Primes & Unique Factorization

The main goal of this chapter is to develop the Fundamental Theorem of Arithmetic, or Unique Factor-
ization Theorem, which states that every integer ≥ 2 can be written uniquely as a product of primes,
e.g.,

36 = 22 · 32, 986 = 2 · 17 · 29, 10001 = 73 · 137

As a precursor, we review some material which you should have encountered in a previous course.

2.1 The Greatest Common Divisor and the Euclidean Algorithm

Our first definition recalls and extends the idea of divisibility seen in the Introduction.

Definition 2.1. Let a, b, d be integers: if d | a and d |b then d is a common divisora of a and b.
If a and b are not both zero, then the greatest common divisor of a, b is written d = gcd(a, b).
We say that a and b are coprime or relatively prime if gcd(a, b) = 1.

aBy convention one tends to list only positive common divisors.

Since there are finitely many positive common divisors (all satisfy d ≤ max(|a| , |b|)) gcd(a, b) must
therefore exist. The definition may be extended to any list of numbers: gcd(a1, . . . , an) is the largest
divisor of all the numbers a1, . . . , an.

Examples 2.2. gcd(0, 9) = 9, gcd(45, 33) = 3, gcd(162, 450) = 18.

Our first goal is to develop an algorithm to efficiently compute gcd’s. This starts with the notion of
division in the integers.

Theorem 2.3 (Division algorithm). If a ∈ Z and b ∈ N, then there exist unique q, r ∈ Z (the
quotient and remainder) such that

a = qb + r, 0 ≤ r < b

Example 2.4. The division algorithm should reminder you of elementary school math!

13 ÷ 4 = 3 r 1
b ÷ a = q r r

}
⇐⇒

{
13 = 3 · 4 + 1

a = q · b + r

Proof. Consider the set S = N0 ∩ {a − bz : z ∈ Z}. This is a non-empty (e.g. take z = − |a|) subset of
the natural numbers, whence (well-ordering) it has a minimum element r ∈ S.
Certainly r ∈ [0, b) for otherwise r − b ∈ S contradicts the minimality of r. Now let q = a−r

b be the
corresponding choice of z to establish existence.
For uniqueness, suppose that a = q1b + r1 and a = q2b + r2 where 0 ≤ r1, r2 < b. Then

−b < r1 − r2 < b and r1 − r2 = (q2 − q1)b

Thus r1 − r2 is divisible by b and lies in the interval (−b, b). Clearly r2 = r1, whence q2 = q1 and we
have uniqueness.
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Is it really an algorithm? The presentation of Theorem 2.3 doesn’t seem very algorithmic: indeed
we simply take it as given that we can find q, r by whatever means we wish (messing with a calculator
is fine!). To see it more as an algorithm, consider the case where a > 0 and follow these instructions:

1. Is a < b? If Yes, stop: r = a and q = 0.

2. Otherwise, compute a − b.

3. Is a − b < b? If Yes, stop: r = a − b and q = 1.

4. Otherwise, compute a − 2b, etc.

5. Repeat until the process terminates.

Simple code

int a=240; int b=7;

int q=0; int r=a;

while(r>=b){r=r-b; q=q+1;}

write(q,r);

The simple program computes q = 34 and r = 2 from a = 240 and b = 7 by repeatedly subtracting 7
from 240 until it can no longer do so. You can check that 240 = 34 · 7 + 2. If you like, you can paste
and edit the code here.

The Euclidean Algorithm For us, the beauty of the division algorithm is that it transfers the gcd of
one pair of numbers to another. For instance, dividing 57 ÷ 12 we see that

57 = 4 · 12 + 9 and gcd(57, 12) = 3 = gcd(12, 9)

More generally, suppose a = bq+ r. Plainly, a and b are both divisible by gcd(b, r). Since any common
divisor of a, b can be no larger than the greatest such;

gcd(b, r) ≤ gcd(a, b)

By symmetry r = a − bq =⇒ gcd(a, b) ≤ gcd(b, r), and we conclude:

Lemma 2.5. If a = bq + r, then gcd(a, b) = gcd(b, r).

If a, b > 0, we may therefore compute gcd(a, b) by repeatedly invoking the division algorithm until
we obtain a remainder rk+1 = 0: this process is the Euclidean algorithm.

(Line 1) a = q1b + r1 0 ≤ r1 < b
(Line 2) b = q2r1 + r2 0 ≤ r2 < r1

(Line 3) r1 = q3r2 + r3 0 ≤ r3 < r2
...

(Line k) rk−2 = qkrk−1 + rk 0 ≤ rk < rk−1

(Line k + 1) rk−1 = qk+1rk + 0

Theorem 2.6. The Euclidean algorithm terminates with final non-zero remainder rk = gcd(a, b).

Proof. A decreasing sequence of positive integers b > r1 > r2 > r3 > · · · > 0 takes at most b steps to reach
0 (in practice far fewer), whence the algorithm terminates in at most b steps.
Finally, by Lemma 2.5,

gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rk−1, rk) = gcd(rkqk+1, rk) = rk

If a or b are negative, simply apply the algorithm to the pair |a| , |b|.

11
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Example 2.7. We use the algorithma to compute gcd(161, 140)

161 = 1 · 140 + 21
140 = 6 · 21 + 14

21 = 1 · 14 + 7
14 = 2 · 7

 =⇒ gcd(161, 140) = 7

We could instead have evaluated gcd(161, 140) by listing the positive divisors of 140 (namely 1, 2,
4, 5, 7, 10, 14, 20, 28, 35, 70, 140) and checking which of these is also a divisor of 161. For larger
a, b, finding all the divisors is prohibitively time-consuming, whereas the Euclidean algorithm will
always do the job in a (relatively) efficient manner.
To motivate the next result, we now reverse the algorithm to express the gcd as a linear combination
of the original pair (161, 140):

7 = 21 − 1 · 14 (rearrange line 3)
= 21 − (140 − 6 · 21) (substitute for r2 = 14 using line 2)
= −140 + 7 · 21
= −140 + 7 · (161 − 140) (substitute for r1 = 21 using line 1)
= 7 · 161 − 8 · 140

aRemainders are in boldface for clarity. We also do this in the next proof. Consider underlining when writing by hand
to help avoid mistakes. Observe how one can trace the same remainder diagonally ↙.

The reversal of the algorithm seen in the example is hugely important and can be done in general.

Theorem 2.8 (Extended Euclidean Algorithm/Bézout’s Identity). Suppose that a, b ∈ Z are not
both zero. Then there exist integers x, y such that

gcd(a, b) = ax + by

There are a great many existence theorems in Mathematics, but few of them tell you explicitly how
to construct the desired objects.

Proof. Suppose a, b > 0 and that we’ve applied the Euclidean algorithm to obtain rk = gcd(a, b).
Rearrange the penultimate line and repeatedly move up the algorithm using each line to substitute
for the smallest remainder:

rk = rk−2 − qkrk−1 (line k)
= rk−2 − qk(rk−3 − qk−1rk−2) = (1 + qk−1qk)rk−2 − qkrk−3 (line k − 1)
= (1 + qk−1qk)(rk−4 − qk−2rk−3)− qkrk−3 = (· · · )rk−3 + (· · · )rk−4 (line k − 2)
...
= (· · · )b + (· · · )r1 (line 2)
= (· · · )a + (· · · )b (line 1)

Each omitted term (· · · ) is plainly an integer, obtained by adding and multiplying the quotients qj.
If either a or b is negative, compute with |a| , |b| and adjust ±-signs accordingly.
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Example 2.9. Find d = gcd(1132, 490) and integers x, y such that d = 1132x + 490y.
Simply apply the algorithm:

1132 = 2 · 490 + 152
490 = 3 · 152 + 34
152 = 4 · 34 + 16

34 = 2 · 16 + 2
16 = 8 · 2

 =⇒ gcd(1132, 490) = 2

Now reverse the steps:

2 = 34 − 2 · 16 (line 4)
= 34 − 2 · (152 − 4 · 34) = 9 · 34 − 2 · 152 (line 3)
= 9 · (490 − 3 · 152)− 2 · 152 = 9 · 490 − 29 · 152 (line 2)
= 9 · 490 − 29 · (1132 − 2 · 490) = 67 · 490 − 29 · 1132 (line 1)

Hence (x, y) = (−29, 67) is a solution to d = 1132x + 490y.

As an example of the immediate theoretical power of Theorem 2.8 we prove the following:

Corollary 2.10. If a, b are coprime and a |bc, then a | c.

Proof. Since gcd(a, b) = 1, ∃x, y ∈ Z such that

1 = ax + by =⇒ c = acx + bcy

This last is divisible by a by assumption.

Now we apply Bézout to obtain an important visualization of gcd(a, b).

Corollary 2.11. Suppose a, b ∈ Z are not both zero and d = gcd(a, b). Then

{ax + by : x, y ∈ Z} = {md : m ∈ Z}

Plainly d is the least positive member of this set.

Proof. Write D = {ax + by : x, y ∈ Z} and M = {md : m ∈ Z}.
(D ⊆ M) Certainly d | ax + by for all x, y ∈ Z, whence every element of D is a multiple of d.
(M ⊆ D) By Bézout’s identity, d = aX + bY for some X, Y ∈ Z, and so d ∈ D. It follows that

md = a(mX) + b(mY) ∈ D

In more advanced treatments involving rings other than the integers, Corollary 2.11 is often used as
the definition of gcd(a, b). This has the advantage of permitting one to define the gcd without first
requiring a Euclidean algorithm: many more rings have a gcd than have a Euclidean algorithm!

13



Linear Diophantine Equations

As a simple application, we consider integer solutions x, y to equations ax + by = c where a, b, c ∈ Z

are given. Bézout’s identity tells us how to find a solution whenever c = gcd(a, b). With the help of
Corollary 2.11, this is essentially all we need.

Corollary 2.12. The Diophantine equation ax + by = c has a solution if and only if gcd(a, b) | c.

Proof. A solution exists ⇐⇒ c ∈ {ax + by : x, y ∈ Z} ⇐⇒ c is a multiple of gcd(a, b).

Example 2.13. Show that 147x − 45y = 2 has no solutions in integers.

147 = 3 · 45 + 12
45 = 3 · 12 + 9
12 = 1 · 9 + 3

9 = 3 · 3

 =⇒ gcd(147, 45) = 3 ∤2

Now let d = gcd(a, b) and suppose that d | c so that we have a solution (x0, y0) to ax + by = c.
Consider (x, y) = (x0 + xh, y0 + yh) and observe that7

ax + by = c ⇐⇒ c = a(x0 + xh) + b(y0 + yh) = c + axh + byh

⇐⇒ axh + byh = 0 ⇐⇒ b
d

yh = − a
d

xh

Since a
d , b

d are coprime integers, Corollary 2.10 shows that b
d divides xh. This is enough to prove:

Corollary 2.14. Let d = gcd(a, b) and suppose (x0, y0) is a solution to the Diophantine equation
ax + by = c. Then all solutions may be found via

(x, y) =
(

x0 +
b
d

t, y0 −
a
d

t
)

where t ∈ Z

Examples 2.15. 1. Find all the solutions to the Diophantine equation 161x + 140y = −14.

By Example 2.7 we have d = gcd(161, 140) = 7 and a solution (7,−8) to 161x + 140y = 7.
Multiply by −2 to obtain a suitable (x0, y0) and apply the Theorem

(x, y) =
(
−14 +

140
7

t, 16 − 161
7

t
)
= (−14 + 20t, 16 − 23t) : t ∈ Z

2. Find all solutions in integers to the equation 490x − 1132y = 4.

By Example 2.9, we know that d = gcd(1132, 490) = 2 and that (−29, 67) is a solution to
1132x+ 490y = 2. Rearranging and taking ±-signs into account, we see that (x0, y0) = (134, 58)
is a solution to the equation of interest. The general solution is therefore

(x, y) =
(

134 +
1132

2
t, 58 +

490
2

t,
)
= (134 + 566t, 58 + 245t) : t ∈ Z

7We use (xh, yh) since this solves the associated homogeneous equation axh + byh = 0. The method of solution is analo-
gous to solving non-homogeneous linear ordinary differential equations and linear algebra problems Ax = b.

14



Exercises 2.1 1. Verify the following elementary properties of divisibility, where a, b, c are integers.

(a) a |0, a | a and ±1 | a.

(b) If a |b and b | c, then a | c (divides is transitive).

(c) If a |b and a | c, then a | (bx + cy) for all x, y ∈ Z.

2. Use the Euclidean Algorithm to compute the following (use a calculator!)

(a) gcd(121, 105) (b) gcd(12345, 67890) (c) gcd(54321, 9876)

3. Evaluate gcd(4655, 12075) in the form 12075x + 4655y where x, y ∈ Z.

4. Find all the integer solutions (if any exist) to the following equations.

(a) 4x − y = 7 (b) 12x + 4y = 10 (c) 105x − 121y = 1

(d) 2072x + 1813y = 2849 (e) 12345x − 67890y = gcd(12345, 67890)

(f)

{
7x + 2y = 21
3x − 7z = 2

(use the method several times)

5. Find all solutions of 19x + 20y = 1909 with x > 0 and y > 0.

6. Let r0, r1, r2, . . . be the successive remainders in the Euclidean Algorithm applied to a > b > 0
(take b = r0). Show that every two steps reduces the remainder by at least one half: i.e.,

ri+2 <
1
2

ri ∀i = 0, 1, 2, 3 . . .

Conclude that the Euclidean algorithm terminates in at most 2 log2 b steps. In particular, show
that the number of steps is at most seven times the number of digits in b.

7. The Fibonacci numbers (Fn)∞
n=1 = (1, 1, 2, 3, 5, 8, 13, . . .) are defined by the recurrence relation{

Fn+2 = Fn+1 + Fn, ∀n ∈ N,
F1 = F2 = 1

(a) Prove that no two successive Fibonacci numbers have a common divisor a > 1.

(b) Use the Euclidean algorithm to verify gcd(F7, F6) = gcd(13, 8) = 1. Repeat for gcd(F8, F7).

(c) Make a hypothesis about how many steps are necessary in order to compute gcd(Fn+1, Fn).

(d) Compute 2 log2 Fn for n = 4, 5, 6, 7, 8. Considering question 6, why might we say that the
Euclidean algorithm is very slow when applied to successive Fibonacci numbers?

8. Let a, b, r, s be given constants. Prove that the arithmetic progressions

{ax + r : x ∈ Z} and {by + s : y ∈ Z}

intersect if and only if gcd(a, b) | (s − r).

9. Show that if ad − bc = ±1, then the fraction a+b
c+d is in reduced form (i.e. gcd(a + b, c + d) = 1).

10. Show that if gcd(a, b) = 1, then gcd(a − b, a + b) = 1 or 2. Exactly when is the value 2?

15



2.2 Primes and Unique Factorization

Now we turn to the building blocks of the integers, the prime numbers. The very idea that the primes
are ‘building blocks’ is a colloquial expression of a famous result, examples of which are on page 10.

Theorem 2.16 (Fundamental Theorem of Arithmetic/Unique Prime Factorization).
Every integer z is either zero, ±1, or may be uniquely factored in the form

z = upµ1
1 · · · pµn

n

where u = ±1, p1 < · · · < pn are primes and each µi ∈ N.

The first question is obvious: what is a prime? You should have previously encountered two suitable
notions, though algebraically they present quite differently.

Definition 2.17. An integer z ≥ 2 is said to be:a

Prime if whenever it divides a product, it divides one of the factors: z | ab =⇒ z | a or z |b

Irreducible if its only positive divisors are 1 and itself: ∀k ∈ N, k | z =⇒ k = 1 or z.

Composite if it is not irreducible: ∃a, b ∈ N such that z = ab and 2 ≤ a, b < z.

aA note for algebraists who might have seen these definitions elsewhere. We follow the convention in the integers
that primes, irreducibles and composites must be positive. A more formal algebraic definition allows, say −5 to be
prime/irreducible. More properly, if z is prime/irreducible in a ring, so is uz where u is a unit: the only units in the
ring of integers are ±1.

Examples 2.18. 1. The integer z = 5 is prime/irreducible:

Prime: for example 5 | (15 · 11) and 5 |15.

Irreducible: its only positive divisors are 1 and 5.

2. The integer z = 4 is not prime & composite:

Not prime: for example 4 | (6 · 10) but 4 ∤6 and 4 ∤10.

Composite: the positive divisors are 1, 2 and 4.

The distinction between primes and irreducibles is partly artificial: the uniqueness proof of the Fun-
damental Theorem will be seen to hinge on the fact that primes and irreducibles are identical! After this
section, prime will refer to any positive integer satisfying both of the prime/irreducible conditions in
Definition 2.17. In abstract algebra however, the distinction is far more important: there exist many
rings where primes and irreducibles are genuinely different objects.8

8In a later class, our approach in this section will be seen to generalize to other rings in which primes and irreducibles
are identical; in such cases an analogue of the unique factorization theorem can often be produced. This isn’t a universal,
for in some rings the concepts are distinct and there might exist non-unique factorizations. For those with some experience:
all four of 2, 3,

√
10 ± 2 are irreducible in the ring Z[

√
10], and we have a non-unique irreducible factorization

6 = 2 · 3 = (
√

10 − 2)(
√

10 + 2)

In this ring, 2 is irreducible but not prime: good luck showing this at the moment!
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Existence: Irreducibiles and Composites

The first stage of proving the Fundamental Theorem is to factor every positive integer by irreducibles.

Lemma 2.19. Every composite is divisible by an irreducible.

Proof. Suppose z ≥ 2 is composite but has no irreducible factors. Then:

• z = a1b1 where a1, b1 ≥ 2 are not irreducible: plainly a1, b1 are composites.

• If a1 had an irreducible factor then this would be an irreducible factor of z. Hence a1 is compos-
ite and may be written a1 = a2b2 for a2, b2 ≥ 2 composite.

• Repeat the process ad infinitum:

z = a1b1 = a2b2b1 = a3b3b2b1 = · · ·

Since each bn ≥ 2 we see that (a1, a2, a3, a4, . . .) is a decreasing sequence of positive integers:
contradiction.

We can now prove a famous result dating at least back to Euclid (300 BC).

Theorem 2.20. There are infinitely many irreducibles.

Proof. Suppose that p1, . . . , pn constitutes all irreducibles and consider P := p1 · · · pn + 1. By Lemma
2.19, P has an irreducible factor p which, by assumption, is one of our irreducibles pi. But then

p |P and p | p1 · · · pn =⇒ p |1

which contradicts the fact that p ≥ 2.

We also quickly obtain the existence part of the Fundamental Theorem.

Theorem 2.21. Every integer z ≥ 2 is a product of irreducibles.

Proof. This is merely an iteration of Lemma 2.19.

• If z is irreducible, we are done.

• Otherwise, z = p1a1 where p1 is irreducible and a1 ∈ N. If a1 is irreducible, we are done.

• Otherwise, z = p1 p2a2 where p2 is irreducible and a2 ∈ N. If a2 is irreducible, we are done.

• Continue until the process terminates and we obtain the factorization z = p1 p2 · · · pn.

If the process never terminated, then (z, a1, a2, . . .) would be a sequence of decreasing positive inte-
gers; a contradiction.

Nothing in the Theorem assists us in computing a suitable factorization. The best approach for small
integers is simply to hack at it. For large numbers, factorization is a very hard (i.e. slow) problem.
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Uniqueness: Primes and Irreducibles are Identical

The existence part of the Fundamental Theorem is really a claim about irreducibles. We’ve said noth-
ing yet about primes.

Lemma 2.22. In the integers, primes and irreducibles are identical.

Proof. 1. (Every prime is irreducible) Suppose p is prime and that p = kl where k, l ∈ N: our
goal is to prove that {k, l} = {1, p}.

Since p is prime, we have p | k or p | l. WLOG suppose the former: k = pα for some α ∈ Z. But
then

p = pαl =⇒ αl = 1

Since we are working in the integers and l > 0, it follows that kl = α = 1 and k = p.

2. (Every irreducible is prime) Suppose z is irreducible and that z | ab where a, b ∈ Z: our goal is
to prove that z | a or z |b.

Let d = gcd(a, z). Since z is irreducible, there are only two possibilities:

• d = 1: in this case gcd(a, z) = 1 and z | ab implies (Corollary 2.10) that z |b.
• d = z: in this case z | a.

The first argument used much less technology than the second, which depended crucially on Bézout’s
identity and the Euclidean algorithm.9

The equivalence of irreducibles and primes yields the uniqueness part of the Fundamental Theorem.

Proof of Theorem 2.16. We can factor z into irreducibles by Theorem 2.21. Now suppose we have two
distinct such factorizations

z = pµ1
1 · · · pµn

n = qν1
1 · · · qνm

m

Since the factorizations are distinct, at least some terms remain after dividing both sides by all com-
mon irreducible factors:

pα1
n1
· · · pαt

nk
= qβ1

m1 · · · qβl
ml

where {pn1 , . . . , pnk} and {qm1 , . . . , qml} are distinct sets of irreducibles and all αi, β j ∈ N.
Plainly the irreducible pn1 divides the right hand side. Since pn1 is also prime (Lemma 2.22) we see that
it divides at least one of the irreducibles qm1 , . . . , qml . This is a contradiction.

9For algebra experts, part 1 really only requires that we’re working in an integral domain:

p = pαl =⇒ p(1 − αl) = 0 =⇒ αl = 1

since an integral domain has no zero divisors. The fact that every prime is irreducible is thus highly generalizable. By
contrast, the existence of a Bézout-type identity or a Euclidean algorithm is very rare in a general ring. The fact that every
irreducible is prime is special to the integers and to relatively few other rings.
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Simple Consequences of the Fundamental Theorem

Now that we have unique factorization, several ‘obvious’ things are seen to be true.

Corollary 2.23. Suppose a = pµ1
1 · · · pµn

n and b = pν1
1 · · · pνn

n are written in terms of their unique
factorizations.a Then:

1. b | a ⇐⇒ νi ≤ µi for all i. Essentially, all primes in b must also be in a.

2. gcd(a, b) = pmin(µ1,λ1)
1 · · · pmin(µn,λn)

n .

3. a is a perfect square if and only if every µi is even (consider a = b2 then µi = 2νi).

4. a2 |b2 =⇒ a |b.

5. If ab is a perfect square and gcd(a, b) = 1, then both a and b are perfect squares.

aSome exponents may need to be zero in order to have the same lists of primes.

The last two statements were used in our discussion of Pythagorean triples.

Definition 2.24. The least common multiple lcm(a, b) of two positive integers a, b is the smallest
positive integer divisible by both a and b.

Following the notation in the Corollary,

a = pµ1
1 · · · pµn

n
b = pν1

1 · · · pνn
n

}
=⇒ lcm(a, b) = pmax(µ1,ν1)

1 · · · pmax(µn,νn)
n

=⇒ lcm(a, b) · gcd(a, b) = ab

This last follows since max(µi, λi) + min(µi, λi) = µi + λi

Warning: this formula does not hold for gcd’s or lcm’s of three or more integers.

Examples 2.25. 1. To find lcm(110, 154), there are three obvious approaches:

(a) Brute force: list several small multiples of each and look for the smallest. This is no fun.
(b) Prime factorizations: if we know that 110 = 2 · 5 · 11 and 154 = 2 · 7 · 11, then

lcm(110, 154) = 2 · 5 · 7 · 11 = 770

(c) Use the Euclidean algorithm:

154 = 1 · 110 + 44
110 = 2 · 44 + 22
44 = 2 · 22

 =⇒ gcd(110, 154) = 22

=⇒ lcm(110, 154) =
110 · 154

22
= 770

2. To find lcm(4, 6, 10), we use the prime factorizations:

lcm(4, 6, 10) = lcm(22, 2 · 3, 2 · 5) = 22 · 3 · 5 = 60

Note that

60 = lcm(4, 6, 10) ̸= 4 · 6 · 10
gcd(4, 6, 10)

=
240
2

= 120
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Exercises 2.2 1. Evaluate the following by finding unique prime factorizations: use a calculator!

(a) lcm(845, 8788)

(b) lcm(825, 495)

(c) lcm(2310, 1870)

(d) lcm(198061, 231896)

2. Suppose that gcd(a, b) = 1 and let c be an integer.

(a) Use the prime factorizations of a, b and c to prove the following.

i. a |bc =⇒ a | c (this is a cheat, since we used it to prove prime factorization!)
ii. If a | c and b | c, then ab | c

iii. gcd(ab, c) = gcd(a, c) gcd(b, c)
(It follows that gcd(ab, c) = 1 ⇐⇒ gcd(a, c) = 1 = gcd(b, c) whenever a, b are coprime)

(b) We proved part (a)(i) in Corollary 2.10 using Bézout’s identity. Can you prove (ii) and (iii)
similarly; i.e. without using unique factorization? (Warning: (iii) is especially difficult!)

3. Use Exercise 2 part (a)(iii) to prove that, for all x, y ∈ Z we have

gcd(ab, ay + bx) = gcd(a, x) gcd(b, y)

4. Suppose a, b, c are all non-zero. Prove or disprove:

(a) gcd(a, b) = gcd(a, c) =⇒ gcd(a2, b2) = gcd(a2, c2)

(b) gcd(a, b) = gcd(a, c) =⇒ gcd(a, b) = gcd(a, b, c)

(c) If p | (a2 + b2) and p | (b2 + c2), then p | (a2 + c2).

5. The square-free numbers are those integers k which are not divisible by the square of any prime
(e.g. 1, 2, 3, 5, 6, 7, 10, 11, 13, . . .). Prove that every integer ≥ 2 is uniquely the product of a square
and a square-free number.

6. Recall that gcd(a, b) · lcm(a, b) = ab for positive integers a, b.

(a) In Example 2.25 we saw that the same formula does not necessarily hold when applied to
three integers a, b, c. Find another such counter-example.

(b) Is it ever true that gcd(a, b, c) · lcm(a, b, c) = abc for positive integers a, b, c? In general is
the LHS less than or greater than abc? Make a hypothesis and try to prove it.

7. Suppose that g, m are positive integers. Prove that g | m if and only if there exist integers a, b
such that gcd(a, b) = g and lcm(a, b) = m.
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3 Congruences and Congruence Equations

A great many problems in number theory rely only on remainders when dividing by an integer. Recall
the division algorithm: given a ∈ Z and n ∈ N there exist unique q, r ∈ Z such that

a = qn + r, 0 ≤ r < n (∗)

It is to the remainder r that we now turn our attention.

3.1 Congruences and Zn

Definition 3.1. For each n ∈ N, the set Zn = {0, 1, . . . , n − 1} comprises the residues modulo n.
Integers a, b are said to be congruent modulo n if they have the same residue: we write a ≡ b (mod n).

The division algorithm says that every integer a ∈ Z has a unique residue r ∈ Zn.

Example 3.2. We may write 7 ≡ −3 (mod 5), since applying the division algorithm yields

7 = 5 × 1 + 2 and − 3 = 5 × (−1) + 2

Indeed both 7 and 12 have residue 2 modulo 5.

As another example, we prove a very simple result.

Lemma 3.3. All squares of integers have remainders 0 or 1 upon dividing by 3.

Proof. Since every integer x has remainder 0, 1 or 2 upon division by 3, we have three mutually
exclusive cases to check:

• x ≡ 0 (mod 3) Write x = 3y for some integer y. But then

x2 = 9y2 = 3(3y2) ≡ 0 (mod 3)

• x ≡ 1 (mod 3) This time x = 3y + 1 for some integer y, and

x2 = 9y2 + 6y + 1 = 3(3y2 + 2y) + 1 ≡ 1 (mod 3)

• x ≡ 2 (mod 3) Finally x = 3y + 2 yields

x2 = 9y2 + 12y + 4 = 3(3y2 + 4y + 1) + 1 ≡ 1 (mod 3)

A perfect square therefore never has remainder 2.

This is very tedious notation. We’d far prefer to compute directly with remainders. Once we’ve
developed such, we’ll return to the Lemma to see how the proof improves. To start this process, we
observe that there is an easier way to check whether two integers are congruent modulo n.
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Theorem 3.4. a ≡ b (mod n) ⇐⇒ n | (a − b)

Proof. Suppose that a = q1n + r1 and b = q2n + r2 are the results of applying the division algorithm
to a, b modulo n. Plainly a ≡ b (mod n) ⇐⇒ r1 = r2. We prove each direction separately:

(⇒) This is almost immediate:

r1 = r2 =⇒ a − nq1 = b − nq2 =⇒ a − b = n(q2 − q1)

Since q2 − q1 is an integer, a − b is a multiple of n.

(⇐) Conversely, suppose that a − b = kn is a multiple of n. Then

r1 − r2 = (a − nq1)− (b − nq2) = (a − b) + n(q2 − q1) = n(k + q2 − q2)

This says that r1 − r2 is an integer multiple of n. Recalling the proof of the division algorithm,
−n < r1 − r2 < n forces r1 − r2 = 0.

The Theorem says that we can compare remainders without computing quotients. In case the advantage
isn’t clear, we recall our earlier example.

Example (3.2 revisited). 7 ≡ −3 (mod 5) follows since 7 − (−3) = 10 is divisible by 5. There is
no need for us to express 7 and −3 using the division algorithm.

Our next goal is to define an arithmetic with remainders, again without calculating quotients.

Example 3.5. If x ≡ 3 and y ≡ 5 (mod 7), then there exist integers k, l such that x = 7k + 3 and
y = 7l + 5. But then

xy = 7(7kl + 5k + 3l) + 15 = 7(7kl + 5k + 3l + 2) + 1 =⇒ xy ≡ 1 (mod 7)

It would be so much simpler if we could write

x ≡ 3, y ≡ 5 =⇒ xy ≡ 3 · 5 ≡ 15 ≡ 1 (mod 7)

Thankfully the next result justifies the crucial step.

Theorem 3.6 (Modular Arithmetic). Suppose that x ≡ a and y ≡ b (mod n). Then

1. x ± y ≡ a ± b (mod n)

2. xy ≡ ab (mod n)

3. For any m ∈ N, xm ≡ am (mod n)

Proof. We just prove 2: part 1 is similar, and part 3 is by induction using part 2 as the induction step.
By Theorem 3.4, there exist integers k, l such that x = kn + a and y = ln + b. But then

xy = (kn + a)(ln + b) = n(kln + al + bk) + ab =⇒ xy ≡ ab (mod n)
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Examples 3.7. We can now easily compute remainders of complex arithmetic objects.

1. What is the remainder when 17113 is divided by 3?

Don’t bother asking your calculator: 17113 is 139 digits long! Instead we use modular arithmetic:

17 ≡ −1 (mod 3) =⇒ 17113 ≡ (−1)113 (Theorem 3.6, part 3.)
≡ −1 (mod 3) (since 113 is odd)

Since −1 ≡ 2, we conclude that 17113 has remainder 2 when divided by 3.

2. Similarly, calculating remainders modulo 10 yields

21945 − 4312 ≡ (−1)45 − 312 ≡ −1 − 96 ≡ −1 − (−1)6 ≡ −1 − 1 ≡ −2 ≡ 8 (mod 10)

3. We find the remainder when 449 is divided by 67. Even with the assistance of a powerful
calculator, evaluating

449 = 316, 912, 650, 057, 057, 350, 374, 175, 801, 344

doesn’t help us! Instead we first search for a power of 4 which is small modulo 67: the obvious
choice is 43 = 64.

449 ≡ 4 · (43)16 ≡ 4 · (−3)16 ≡ 4 · 316 (mod 67)

Next we search for a power of 3 which is small: since 34 = 81 ≡ 14 (mod 67) we obtain

449 ≡ 4 · (34)4 ≡ 4 · 144 (mod 67)

Now observe that 142 = 196 ≡ −5 (mod 67) and we are almost finished:

449 ≡ 4 · (−5)2 ≡ 4 · 25 ≡ 100 ≡ 33 (mod 67)

Now that we have some better notation, here is a much faster proof of Lemma 3.3.

Proof. Modulo 3 we have:

02 ≡ 0, 12 ≡ 1, 22 ≡ 4 ≡ 1

Hence squares can only have remainders 0 or 1 modulo 3.

As an application, we can easily show that in a primitive Pythagorean triple (a, b, c) exactly one of a
or b is a multiple of three. Just think about the remainders modulo 3:

a2 + b2 ≡ c2 (mod 3)

The only possibilities are 0 + 0 ≡ 0, 0 + 1 ≡ 1 and 1 + 0 ≡ 1, however the first says that all three of
a, b, c are divisible by three which results in a non-primitive triple.
Similar games can be played with other primes.
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Congruence and Division By Theorem 3.6, we may add, subtract, multiply and take positive inte-
ger powers of remainders without issue. Division is another matter entirely: it simply does not work
in the usual sense.

Example 3.8. Since 54− 30 = 24 is divisible by 8, we see that 54 ≡ 30 (mod 8). We’d like to divide
both sides this congruence by 6, however

6 × 9 ≡ 6 × 5 (mod 8) ≠⇒ 9 ≡ 5 (mod 8)

since the right hand side is false. What can we try instead? Instead we follow the definition:

6 × 9 ≡ 6 × 5 (mod 8) =⇒ 6 × 9 = 6 × 5 + 8m for some10m ∈ Z

We can’t automatically divide this by 6, but we can certainly divide through by 2:

3 × 9 = 3 × 5 + 4m =⇒ 3 |4m =⇒ 3 |m =⇒ m = 3l for some l ∈ Z

We may now divide by 3 to correctly conclude

9 = 5 + 4l =⇒ 9 ≡ 5 (mod 4)

It appears that we were able to divide our original congruence by 6, but at the cost of dividing the
modulus by 2: it just so happens that 2 = gcd(6, 8). . .

Theorem 3.9. If k ̸= 0 and gcd(k, n) = d, then

ka ≡ kb (mod n) =⇒ a ≡ b (mod n
d )

Proof. gcd(k, n) = d =⇒ gcd
(

k
d , n

d

)
= 1 so that n

d and k
d are coprime integers. Appealing to a

corollary11of Bézout’s identity, we see that

ka ≡ kb =⇒ n | (ka − kb) =⇒ n
d

∣∣∣ k
d
(a − b) =⇒ n

d

∣∣∣ (a − b)

Otherwise said a ≡ b (mod n
d ).

Examples 3.10. 1. We divide by 4 in the congruence 12 ≡ 28 (mod 8). Since gcd(4, 8) = 4 we also
divide the modulus by 4 to obtain

12 ≡ 28 (mod 8) =⇒ 3 ≡ 7 (mod 2)

2. We divide by 12 in the congruence 12 ≡ 72 (mod 30). Since gcd(12, 30) = 6, we conclude that

12 ≡ 72 (mod 30) =⇒ 1 ≡ 6 (mod 5)
10It is obvious that m = 3 but leaving this unsaid makes it easier to see a proof of the following theorem.
11If gcd(a, b) = 1 and a |bc, then a | c. This is the crucial step in the calculation, corresponding to the =⇒ arrows in both

the proof and the previous example.
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Division in the ring Zn The development of modular arithmetic (Theorem 3.6) shows that the set
of residues Zn = {0, 1, . . . , n − 1} modulo n has the algebraic structure of a ring.12 The interesting
question for us is when one can divide.
Recall in the real numbers that to divide by x means that we multiply by some element x−1 satisfying
xx−1 = 1: plainly this is possible provided x ̸= 0. The same idea holds in Zn.

Definition 3.11. Let x ∈ Zn. We say that y ∈ Zn is the inverse of x if xy ≡ yx ≡ 1 (mod n).
An element x is a unit if it has an inverse. A ring is a field if every non-zero element is a unit.

Example 3.12. By considering the multiplication tables for Z5 and Z6, we can easily identify the
units and their inverses:

Z5 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Z6 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

There are plainly only two units in Z6, namely 1 and 5. Moreover, each is its own inverse

1 · 1 ≡ 1, 5 · 5 ≡ 1 (mod 6)

Modulo 5, however, every non-zero residue is a unit:

1 · 1 ≡ 1, 2 · 3 ≡ 3 · 2 ≡ 1, 4 · 4 ≡ 1 (mod 5)

In the example, the units have a simple property in common.

Theorem 3.13. x ∈ Zn is a unit ⇐⇒ gcd(x, n) = 1.
Moreover, every non-zero x ∈ Zn is a unit (thus Zn is a field) if and only if n = p is prime.

Proof. (⇒) If xy ≡ 1 (mod n), then xy − λn = 1 for some λ ∈ Z. Plainly any common factor of x
and n divides 1, whence gcd(x, n) = 1.
(⇐) By Bézout’s identity, ∃λ, y ∈ Z such that

xy + nλ = 1 =⇒ xy ≡ 1 (mod n)

Plainly every non-zero x is a unit if and only if gcd(x, n) = 1 for all x ∈ {1, . . . , n − 1}. This is if and
only if n has no divisors except itself and 1: i.e. n is prime.

This result gels with Theorem 3.9: we can divide a congruence by k while remaining in Zn precisely
when d = gcd(k, n) = 1. Moreover, the proof tells us how to compute inverses: use Bézout!

12More formally, it inherits this structure from the integers as a factor ring: Zn = Z
/

nZ
= {[0], [1], . . . , [n − 1]} is a set of

equivalence classes where x ∼ y ⇐⇒ x ≡ y (mod n). For this course, familiarity with this construction is unimportant.
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Example 3.14. Find the inverse of 15 ∈ Z26.
First observe that gcd(15, 26) = 1, so an inverse exists. Now apply the Euclidean algorithm and
Bézout’s identity:

26 = 1 · 15 + 11
15 = 1 · 11 + 4
11 = 2 · 4 + 3
4 = 1 · 3 + 1

=⇒ gcd(26, 15) = 1 = 4 − 3 = 4 − (11 − 2 · 4)
= 3 · 4 − 11 = 3(15 − 11)− 11
= 3 · 15 − 4 · 11 = 3 · 15 − 4(26 − 15)
= 7 · 15 − 4 · 26

from which we see that 15 · 7 ≡ 1 (mod 26): the inverse of 15 is therefore 7.

Exercises 3.1 1. Find the residues (remainders) of the following expressions:

(a) 64 − 38 · 48 (mod 5)

(b) 11732 + 11831 (mod 7)

(c) 35101340 − 27094444 (mod 24)

2. Suppose that d |m. Show that if a ≡ b (mod m
d ), then

a ≡ b, or b +
m
d

, or · · · , or b + (d − 1)
m
d

(mod m)

3. Show that a positive integer is divisible by 3 if and only if the sum of its digits is divisible by 3.

(Hint: for example 471 = 4 · 100 + 7 · 10 + 1 . . .)

4. Suppose z ∈ N and that z ≡ 3 (mod 4). Prove that at least one of the primes p dividing z must
be congruent to 3 modulo 4.

5. (a) State the units in the ring Z48.

(b) Find the inverse of 11 modulo 48.

(c) If 11x ≡ 2 (mod 48) for some x ∈ Z48, find x.

6. Prove that inverses are unique: if y, z are inverses of x ∈ Zn, then y ≡ z (mod n).

7. A non-zero element x ∈ Zn is a zero divisor if ∃y ∈ Zn such that xy ≡ 0 (mod n). Prove that
Zn has zero divisors if and only if n is composite.

8. Suppose p is prime and a ̸≡ 0. Prove that the remainders 0, a, 2a, 3a, . . . , (p − 1)a are distinct
modulo p, and thus constitute all of Zp.

9. Suppose r and s are odd. Prove the following:

(a)
rs − 1

2
≡ r − 1

2
+

s − 1
2

(mod 2)

(b) r2 ≡ s2 ≡ 1 (mod 8)

(c)
(rs)2 − 1

8
≡ r2 − 1

8
+

s2 − 1
8

(mod 8)

10. Prove that (kk) is periodic modulo 3 and find its period.

(Hint: First try to spot a pattern. . . )
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3.2 Congruence Equations and Lagrange’s Theorem

In this section we consider polynomial congruence equations p(x) ≡ 0 (mod m). The simplest type
are linear: in fact we know how to solve these already.

∃x ∈ Z s.t. ax ≡ c (mod m) ⇐⇒ ∃x, y ∈ Z s.t. ax + my = c

This last is a linear Diophantine equation; we need only rephrase our work from earlier.

Theorem 3.15. Let d = gcd(a, m). The equation ax ≡ c (mod m) has a solution iff d | c. If x0 is a
solution, then all solutions are given by

x = x0 + k
m
d

: k ∈ Z

Moreover, modulo m, there are exactly d solutions, namely

x0, x0 +
m
d

, x0 +
2m
d

, . . . , x0 +
(d − 1)m

d

Examples 3.16. 1. We solve the congruence equation 15x = 4 (mod 133).

By the Euclidean algorithm/Bézout, we see that

133 = 8 · 15 + 13
15 = 1 · 13 + 2
13 = 6 · 2 + 1

=⇒ d = gcd(15, 133) = 1 = 13 − 6 · 2 = 13 − 6(15 − 13)
= 7 · 13 − 6 · 15
= 7(133 − 8 · 15)− 6 · 15
= 7 · 133 − 62 · 15

Since d = 1 and d |4, there is exactly one solution. Moreover, modulo 133, we see that

15 · (−62) ≡ 1 =⇒ 15 · (−248) ≡ 15 · 18 ≡ 4 (mod 133)

whence x0 = 18 is the unique solution.a

2. We solve the linear congruence 1288x ≡ 21 (mod 1575).

Assume we have applied the Euclidean algorithm and Bézout’s identity to obtain

d = gcd(1575, 1288) = 7 = 1575 · 9 − 1288 · 11

Since 7 |21, there are precisely seven solutions. Indeed

7 ≡ 1288(−11) (mod 1575) =⇒ x = −33 ≡ 1542 (mod 1575)

Moreover, m
d = 1575

7 = 225, whence all solutions are

{x ≡ −33 + 225k : k = 0, . . . , 6} = {192, 417, 642, 867, 1092, 1317, 1542}
aBecause gcd(15, 133) = 1, we see that 15 is a unit modulo 133. Indeed the Bézout calculation says that its inverse is

15−1 ≡ −62 ≡ 71 ∈ Z133. Since 133 = 7 · 19, the units are precisely those elements which are divisible by neither 7 nor 19.
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Higher degree congruences While we were able to give a complete description of the solutions to
a linear congruence, for higher order polynomials, things quickly become very messy. We start with
a simple example of a quadratic congruence which can easily be solved by inspection.

Example 3.17. Consider the quadratic equation x2 + 3x ≡ 0 (mod 10). One can easily check by
plugging in the remainders 0, . . . , 9 that the solutions to this equation are

x ≡ 0, 2, 5, 7 (mod 10)

This is perhaps surprising, since we are used to quadratic equations having at most two solutions.
Now consider the same equation modulo the prime divisors of 10. Since 10 |d ⇐⇒ 2 |d and 5 |d, we
see that

x2 + 3x ≡ 0 (mod 10) ⇐⇒
{

x2 + 3x ≡ 0 (mod 2)
x2 + 3x ≡ 0 (mod 5)

By substituting values for x, we easily check that sanity is restored: each congruence now has two
solutions!

x2 + 3x ≡ 0 (mod 2) ⇐⇒ x ≡ 0, 1 (mod 2)

x2 + 3x ≡ 0 (mod 5) ⇐⇒ x ≡ 0, 2 (mod 5)

We can even factorize in the familiar manner:

x2 + 3x ≡ x2 − x ≡ x(x − 1) (mod 2)

x2 + 3x ≡ x2 − 2x ≡ x(x − 2) (mod 5)

Modulo 10, however, we have two distinct factorizations:

x2 + 3x ≡ x(x − 7) ≡ (x − 2)(x − 5) (mod 10)

For general polynomial congruences, the same sort of thing is true. The number of solutions and
types of factorizations are more predictable when the modulus is prime.

Theorem 3.18 (Lagrange). Let p be prime and f (x) a polynomial with integer coefficients and de-
gree n modulo p. Then f (x) ≡ 0 (mod p) has at most n distinct roots.

Lagrange’s Theorem is useless for congruences such as x39 + 25x2 + 1 ≡ 0 (mod 17): since there are
only 17 distinct values of x to try, the congruence has a maximum of 17 solutions, not 39.
Before proving Lagrange’s Theorem, we need one additional ingredient.

Lemma 3.19 (Factor Theorem in Z[x]). Suppose f (x) is a polynomial with integer coefficients and
that c ∈ Z. Then there exists a unique polynomial q(x), also with integer coefficients, such that

f (x) = (x − c)q(x) + f (c)

Moreover, f (c) = 0 if and only if (x − c) is a factor of f (x). This is also true modulo any n.
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Proof. Suppose f (x) = anxn + · · ·+ a0 is given. Since x − c is linear, we require deg q = n − 1. Write
q(x) = qn−1xn−1 + · · ·+ q0, let r be constant, and consider

anxn + · · ·+ a0 = (x − c)(qn−1xn−1 + · · ·+ q1x + q0) + r

= qn−1xn + (qn−2 − cqn−1)xn−1 + · · ·+ (q0 − cq1)x + r − cq0

Equating the coefficients of 1, x, x2, . . . , xn yields the (n + 1)× (n + 1) linear algebra problem


a0
a1
a2
...

an−1
an

 =


1 −c 0 0 0
0 1 −c 0 0
0 0 1 0 0

. . . . . .
0 0 0 1 −c
0 0 0 0 1




r
q0
q1

...
qn−2
qn−1

 =⇒


r
q0
q1

...
qn−2
qn−1

 =


1 c c2 cn−2 cn−1

0 1 c cn−3 cn−2

0 0 1 cn−4 cn−3

. . . . . .
0 0 0 1 c
0 0 0 0 1




a0
a1
a2
...

an−1
an


Since the inverse matrix has integer coefficients, it follows that each qj and r are uniquely defined
integers. Finally, since f (x) = (x − c)q(x) + r, evaluation at x = c yields r = f (c).

We are now ready to prove Lagrange: let us first reiterate the crucial observation from the Factor
Theorem: for any n,

f (c) ≡ 0 (mod n) ⇐⇒ ∃q(x) such that f (x) ≡ (x − c)q(x) (mod n)

Proof of Lagrange. Suppose f (x) = anxn + · · · is a polynomial with integer coefficients and degree n
modulo p: that is, p ∤ an. Moreover, assume that f (c1) ≡ 0 (mod p). By the factor theorem, there
exists a unique polynomial q1(x) with integer coefficients, such that

f (x) = (x − c1)q1(x) + f (c1) ≡ (x − c1)q1(x) (mod p)

Plainly q1(x) = anxn−1 + · · · has degree n − 1 modulo p. If c2 ̸≡ c1 is another root modulo p, then

0 ≡ f (c2) ≡ (c2 − c1)q1(c2) =⇒ q1(c2) ≡ 0 (mod p)

The last step is where we need p to be prime.13We may therefore factor out (x− c2) from q1(x) modulo
p, and thus from f (x). Repeating the process, if there are n distinct roots, then f (x) factorizes as

f (x) ≡ (x − c1) · · · (x − cn)qn(x) (mod p)

where qn(x) has degree n − n = 0: it is necessarily the constant an. Finally, if ξ ̸≡ ci for any i, then

f (ξ) ≡ an(ξ − c1) · · · (ξ − cn) ̸≡ 0 (mod p)

since there are no zero divisors in Zp. We conclude that f (x) ≡ 0 has no further roots modulo p.

In fact the ring of polynomials with coefficients in Zp has a Euclidean algorithm which can be used
to prove a unique factorization theorem: there is only one way to factorize a polynomial modulo p.
We won’t prove it, but you are welcome to use the fact nonetheless.

13 p | (c2 − c1)q1(c2) and gcd(c2 − c1, p) = 1, whence p |q1(c2).
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Examples 3.20. 1. By testing the values14x ≡ 0, 1,−1 (mod 7), we see that

f (x) ≡ x3 − x (mod 7)

has these distinct solutions. By Lagrange, it has no other solutions. Indeed this example factor-
izes very easily

f (x) ≡ x(x − 1)(x + 1)

2. Lagrange only says that there are at most n solutions modulo p. It is straightforward to check
(let x = 0, 1. . . ) that the polynomial f (x) ≡ x2 + x + 1 (mod 2) has no solutions.

3. Factorize f (x) = x3 + 2x2 + 4x + 3 over Z5.

By inspection we see that x ≡ ±1,−2 are solutions. By Lagrange’s Theorem these are the only
solutions and we can factorize

f (x) ≡ (x − 1)(x + 1)(x + 2) (mod 5)

We know that the factorization is unique and there are no other solutions, but it is worth seeing
it played out in stages.

f (x) ≡ x3 + 2x2 + 4x + 3 ≡ (x − 1)(x2 + 3x + 7) (spot x ≡ 1 and factorize)

≡ (x − 1)(x2 + 3x + 2) (simplify)
≡ (x − 1)(x + 1)(x + 2) (spot x ≡ −1 and factorize)

Aside: How to factorize? If you have trouble factorizing the previous example, here is a simple
algorithm. Since f (1) ≡ 0, we know that f (x) ≡ (x − 1)q(x) for some quadratic q(x).

1. Since we need an x3 term, the first coefficient of q(x) is plainly x2:

x3 + 2x2 + 4x + 3 ≡ (x − 1)(x2 + · · · )

2. We now have −x2 on the right hand side, but we want 2x2. We therefore need to add 3x2 by
inserting a linear term into q(x):

x3 + 2x2 + 4x + 3 ≡ (x − 1)(x2 + 3x + · · · )

3. We now have −3x on the right hand side, but we want 4x. We therefore add 7x by inserting a
constant term into q(x):

x3 + 2x2 + 4x + 3 ≡ (x − 1)(x2 + 3x + 7)

4. Verify that the factorization is correct by multiplying the constants:

x3 + 2x2 + 4x + 3 ≡ (x − 1)(x2 + 3x + 7)

Indeed 3 ≡ −7 (mod 5) so we’re done.

This approach works for any linear division and has the advantage of being able to write down the
answer in one line. Of course, you’re welcome to write it out using long division!

14Plainly −1 ≡ 2 (mod 3): it is simply easier to use ‘smaller’ representatives when calculating.
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Examples 3.21. 1. Find all roots of f (x) ≡ x4 + 2x3 + 2x − 1 (mod 7) and factorize.

We start by trying values: plainly f (0) ≡ −1 and f (1) ≡ 4 are non-zero. However

f (2) ≡ 16 + 16 + 4 − 1 ≡ 2 + 2 + 4 − 1 ≡ 0 (mod 7)

so we factor out x − 2:

f (x) ≡ (x − 2)(x3 + 4x2 + 8x + 18) ≡ (x − 2)(x3 − 3x2 + x − 3) (mod 7)

x ≡ 3 is a root of the cubic, so we factor out x − 3:

f (x) ≡ (x − 2)(x − 3)(x2 + 1) (mod 7)

It is easily checked that x2 + 1 ≡ 0 (mod 7) has no solutions, so we’re done.

2. Compare with Example 3.17. Modulo 6 we have a non-unique factorization:

f (x) ≡ x2 − 5x ≡ x(x − 5) ≡ (x − 2)(x − 3) (mod 6)

Re-read the proof of Lagrange’s Theorem and make sure you understand where the argument
fails!

3. Wind all solutions to x2 + 14x − 3 ≡ 0 (mod 18). Rather than try all remainders 0, 1, . . . , 17,
here is a more systematic approach.

If x is a solution, then both{
x2 + 14x − 3 ≡ x2 − 1 ≡ 0 (mod 2) =⇒ x odd, and,
x2 + 14x − 3 ≡ x2 + 5x − 3 ≡ 0 (mod 9) =⇒ x2 + 2x ≡ 0 (mod 3)

Plainly x ≡ 0, 1 (mod 3) (since 3 is prime, this is in line with Lagrange). We therefore try
x ≡ 0, 1, 3, 4, 6, 7 (mod 9) and observe that only x ≡ 6, 7 (mod 9) work. We therefore have to
solve two different sets of equations:{

x ≡ 1 (mod 2)
x ≡ 6 (mod 9)

or

{
x ≡ 1 (mod 2)
x ≡ 7 (mod 9)

We have two sets of simultaneous equations. In general, the Chinese Remainder Theorem
(later) can deal with these, but these are so simple that there is no need. For instance

x ≡ 6 (mod 9) =⇒ x ≡ 6, 15 (mod 18)

Since x must also be odd (and 18 is even), only x ≡ 15 (mod 18) will do. Similarly, the second
simultaneous congruence has solution x ≡ 7 (mod 18).

4. Find all solutions to x3 − 2x + 1 ≡ 0 (mod 12).

We easily spot that x ≡ 1 (mod 12) is a solution. Are there others? Considering the primes
dividing 12 we see that any solution must satisfy

x3 − 2x + 1 ≡ (x − 1)(x2 + x − 1) ≡ 0 (mod 2) and (mod 3).

It is clear by inspection that the only solutions modulo 2 and 3 are x ≡ 1. It follows that any
solution must satisfy x ≡ 1 (mod 6). Stepping this up to modulo 12, we should try x ≡ 1 and
x ≡ 7 (mod 12). The first is certainly a solution. As for the latter,

73 − 2 · 7 + 1 ≡ 7 · 49 − 14 + 1 ≡ 7 − 2 + 1 ≡ 6 (mod 12)

It follows that the only solution is x ≡ 1 (mod 12).
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Exercises 3.2 1. Solve the following equations for x, or show that there is no solution:

(a) 3x − 4 ≡ 7 (mod 11)

(b) 12x + 5 ≡ 7 (mod 16)

(c) 7x − 9 ≡ 5 (mod 21)

2. Solve the following polynomial congruence equations modulo a prime.

(a) x2 + 4x + 3 ≡ 0 (mod 11)

(b) x3 − 4x ≡ 0 (mod 17)

(c) x2 + 4x + 1 ≡ 0 (mod 13)

(d) x4 + 4x + 2 ≡ 0 (mod 7)

(e) x3 + x2 − 2 ≡ 0 (mod 13)

(f) x3 − 100x ≡ 0 (mod 997)

You can solve these by trial and error, but can you do them systematically?

3. Solve the following polynomial congruence equations modulo a composite.

(a) x2 + 4x + 5 ≡ 0 (mod 10)

(b) x2 + 4x + 3 ≡ 0 (mod 15)

(c) x3 + x2 − 2 ≡ 0 (mod 39)

4. Suppose that gcd(a, b) = 1. Prove that

x ≡ 0 (mod ab) ⇐⇒
{

x ≡ 0 (mod a)
x ≡ 0 (mod b)

What goes wrong when a, b are not coprime?

5. Informally explain why a quadratic congruence ax2 + bx + c ≡ 0 (mod 15) has at most four
distinct solutions.
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3.3 Powers and Fermat’s Little Theorem

Fermat’s Little15 Theorem provides a useful trick for simplifying large powers in congruences.

Theorem 3.22 (Fermat’s Little Theorem). If p is prime and p ∤ a then ap−1 ≡ 1 (mod p)

Proof. Recall Exercise 3.2.8, where we saw that the remainders a, 2a, . . . , a(p − 1) are distinct and
non-zero: they are simply 1, 2, . . . , p − 1 in a different order. Multiply these lists together to obtain

ap−1(p − 1)! ≡ (p − 1)! (mod p)

Since p is prime and gcd
(
(p − 1)!, p

)
= 1, we divide by (p − 1)! for the result.

Examples 3.23. The power of Fermat’s Little Theorem to simplify calculations is considerable.
Imagine how tedious the following would be without it!

1. Since 239 is not divisible by the prime 137, we instantly see that

239136 ≡ 1 (mod 137)

2. We compute the remainder when 6698 is divided by the prime 97.

6698 ≡ 6697−1 · 662 ≡ 662 (mod 97)

≡ (−31)2 ≡ 961 ≡ −9
≡ 88 (mod 97)

3. We solve the high-degree congruence x74 ≡ 12 (mod 37).

First note that 37 is prime and that if there is a solution x, then it is non-zero. The theorem
therefore applies, and we see that

x37−1 ≡ x36 ≡ 1 (mod 37)

Since 74 = 36 × 2 + 2 we conclude that

12 ≡ x74 ≡ (x36)2 · x2 ≡ x2 (mod 37)

We have therefore reduced the congruence to something much more manageable.

This new equation can be solved by brute force: by considering numbers congruent to 12 mod-
ulo 37, we don’t have far to look before we find a perfect square!

12, 49, . . .

Thus x ≡ 7 is a solution, which says that x ≡ −7 ≡ 30 is another. By Lagrange’s Theorem,
there are at most two solutions to this congruence: we conclude

x74 ≡ 12 ⇐⇒ x ≡ 7, 30 (mod 37)

15To distinguish it from his famous Last Theorem. The little theorem is often abbreviated FℓT, and the last FLT.
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Riffle-shuffling

As a fun example of Fermat at work, consider a standard ‘riffle’ shuffle of a 52-card deck of playing
cards. The process is as follows:

• Label the cards 1, 2, 3, . . . 52 from bottom to top.

• Cut the deck into two stacks of 26 cards.

• Alternate cards from the bottom of each stack: position x moves to position s(x), where

x 1 2 3 · · · 25 26 27 28 · · · 50 51 52
s(x) 2 4 6 · · · 50 52 1 3 · · · 47 49 51

It is not hard to give a formula to this function:

s : {1, 2, . . . , 52} → {1, 2, . . . , 52} : x 7→ 2x (mod 53)

1
27

23
49

2
28

24
50

3
29

25
51

4
30

26
52

1

49

2

50

3

51

4

52

25

27

26

28

We can now ask some simple questions:

1. If we keep perfectly shuffling the pack, will it eventually end up in the starting arrangement
and how long with it take?

2. Of all possible arrangements of a deck, how many can be achieved just by shuffling?

Fermat’s Little Theorem makes these questions easy to answer:

1. Shuffling n times produces the function

sn : x 7→ 2nx (mod 53)

Since 53 is prime, s52(x) ≡ 252x ≡ x (mod 53), whence every card ends up in its starting
position after 52 riffle shuffles. It is tedious to check, but in fact this is the minimum number of
shuffles required.

2. Even though there are 52! ≈ 1068 potential arrangements of 52 cards in a deck, perfect shuffling
of a new pack can only result in a comparatively tiny 52 distinct arrangements. Thankfully
shuffling is rarely perfect, even when performed by a pro!

You should be able to think up several modifications of this problem, and we’ll return to it later. . .
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We finish with another nice result tying together Lagrange and Fermat.

Corollary 3.24 (Wilson’s Theorem). If p is prime then (p − 1)! ≡ −1 (mod p)

Proof. Consider the polynomial congruence

g(x) ≡ (xp−1 − 1)− (x − 1)(x − 2) · · ·
(
x − (p − 1)

)
≡ 0 (mod p)

• Multiply out and cancel the leading xp−1 terms to see that g has degree at most p − 2. Lagrange
says that g(x) ≡ 0 has at most p − 2 distinct roots.

• Fermat says that g(x) ≡ 0 has at least p − 1 distinct roots, namely x ≡ 1, 2, . . . , p − 1.

The only way to make sense of this is if g(x) is not really a polynomial! It must be identically zero
modulo p. It follows that

xp−1 − 1 ≡ (x − 1)(x − 2) · · ·
(
x − (p − 1)

)
(mod p)

Finally, evaluate at x ≡ 0 for the result.

If you’re having trouble understanding the proof, try an example! When p = 3 we have

g(x) ≡ x2 − 1 − (x − 1)(x − 2) ≡ x2 − 1 − x2 + 3x − 2 ≡ 3x − 3 ≡ 0 (mod 3)

The point is that while g(x) might look like it has degree ≤ 1, it is in fact the zero polynomial.

Exercises 3.3 1. Solve the following congruences with the assistance of Fermat’s Little Theorem.

(a) x86 ≡ 6 (mod 29) (b) x39 ≡ 8 (mod 13) (c) x502 ≡ 16 (mod 101)

2. Let p be prime. By describing the distinct roots of xp−1 − 1 ≡ 0 and factorizing, prove that

xp−1 − 1 ≡ a(x − 1)(x − 2) · · ·
(
x − (p − 1)

)
(mod p)

for some non-zero a ∈ Zp. Hence provide an alternative proof of Wilson’s Theorem.

3. Recall the binomial theorem: (x + y)p =
p
∑

k=0
(p

k)xkyp−k, where (p
r) =

p!
r!(p−r)! (this is an integera).

(a) If p is prime and 1 ≤ r ≤ p − 1, prove that p
∣∣ (p

r). Hence prove that

(x + y)p ≡ xp + yp (mod p)

(b) For any integers x1, . . . , xn, prove that (x1 + · · ·+ xn)p ≡ xp
1 + · · ·+ xp

n (mod p).

(c) Prove that ap ≡ a (mod p) for all integers a. Hence give an alternative proof of Fermat.

4. (a) Suppose a deck has 30 cards. Argue that riffle shuffling will eventually reset the deck.

(b) How many shuffles do you really need when there are 30 cards? It is a lot less than 30. . .

(c) Suppose that a deck has 2m cards. What might go wrong with the argument?

aCan you convince yourself of this? How many ways can you choose r objects from p?
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4 Euler’s Totient Function

4.1 Euler’s Function and Euler’s Theorem

Recall Fermat’s little theorem:

p prime and p ∤ a =⇒ ap−1 ≡ 1 (mod p)

Our immediate goal is to think about extending this to composite moduli. First let’s search for patterns
in the powers ak modulo 6, 7 and 8:

modulo 6 modulo 7 modulo 8

k 1 2 3 4 5
a = 1 1 1 1 1 1

2 2 4 2 4 2
3 3 3 3 3 3
4 4 4 4 4 4
5 5 1 5 1 5

k 1 2 3 4 5 6
a = 1 1 1 1 1 1 1

2 2 4 1 2 4 1
3 3 2 6 4 5 1
4 4 2 1 4 2 1
5 5 4 6 2 3 1
6 6 1 6 1 6 1

k 1 2 3 4 5 6 7
a = 1 1 1 1 1 1 1 1

2 2 4 0 0 0 0 0
3 3 1 3 1 3 1 3
4 4 0 0 0 0 0 0
5 5 1 5 1 5 1 5
6 6 4 0 0 0 0 0
7 7 1 7 1 7 1 7

The column in red (modulo 7) represents Fermat’s little theorem. Unfortunately there don’t seem to
be many 1’s in the other tables: indeed the tables should suggest the following.

Lemma 4.1. If k ≥ 1 is such that ak ≡ 1 (mod n), then gcd(a, n) = 1 (a is a unit modulo n).

The proof is a (hopefully) straightforward exercise.
We turn now to the converse: if gcd(a, n) = 1, can we find k such that ak ≡ 1 (mod n)? Again, let’s
consider the tables and look for patterns:

Modulo 6 The units are a ≡ 1, 5. For such a we see that a2 ≡ 1 (mod 6).

Modulo 7 Every non-zero remainder is a unit, and a6 ≡ 1 (mod 7).

Modulo 8 The units are a ≡ 1, 3, 5, 7. For such a we see that a2 ≡ 1 (mod 8).

In each case, observe that ak ≡ 1 whenever k is the number of units16 modulo n. Given all this, we make
a definition and a hypothesis:

Definition 4.2. Euler’s totient function φ : N → N is defined by17

φ(n) =
∣∣{0 < a ≤ n : gcd(a, n) = 1}

∣∣
Theorem 4.3 (Euler’s Theorem). If gcd(a, n) = 1 then aφ(n) ≡ 1 (mod n).

16Certainly a4 ≡ 1 (mod 8) satisfies this pattern, even though a lower power k = 2 does also.
17Whenever n ≥ 2, Euler’s function returns the number of units modulo n. The definition is constructed so as to include

φ(1) = 1. In what follows, the n = 1 case is always trivial and uninteresting; to avoid tedium we’ll assume that n ≥ 2.
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Here are the first few values of Euler’s function; we also list the units.

φ(1) = 1 =
∣∣{1}

∣∣ φ(7) = 6 =
∣∣{1, 2, 3, 4, 5, 6}

∣∣
φ(2) = 1 =

∣∣{1}
∣∣ φ(8) = 4 =

∣∣{1, 3, 5, 7}
∣∣

φ(3) = 2 =
∣∣{1, 2}

∣∣ φ(9) = 6 =
∣∣{1, 2, 4, 5, 7, 8}

∣∣
φ(4) = 2 =

∣∣{1, 3}
∣∣ φ(10) = 4 =

∣∣{1, 3, 7, 9}
∣∣

φ(5) = 4 =
∣∣{1, 2, 3, 4}

∣∣ φ(11) = 10 =
∣∣{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

∣∣
φ(6) = 2 =

∣∣{1, 5}
∣∣ φ(12) = 4 =

∣∣{1, 5, 7, 11}
∣∣

Whenever p is prime, we clearly have φ(p) = p − 1, from which we see that Fermat’s little theorem
is merely a special case of Euler’s. You should mentally check that the main result holds for several
of the values listed above with composite moduli: e.g.

4φ(9) ≡ 46 ≡ 163 ≡ (−2)3 ≡ −8 ≡ 1 (mod 9)

Perhaps unsurprisingly, we can prove Euler’s theorem analogously to how we proved Fermat’s.

Proof. Let a be a unit and let Z×
n = {x ∈ Zn : gcd(x, n) = 1} be the set of units modulo n. Define

fa(x) = ax (mod n). We claim that fa : Z×
n → Z×

n is bijection (invertible). This requires two checks:

1. If x ∈ Z×
n , then fa(x) = ax is also a unit: if neither a nor x have any common divisors with n,

then neither does the product ax.

2. Since a is a unit, it has an inverse b. But then f−1
a = fb as is readily checked: for any x,

( fa ◦ fb)(x) ≡ fa
(

fb(x)
)
≡ a(bx) ≡ (ab)x ≡ x (mod n)

Since fa : Z×
n → Z×

n is bijective, we may list the units in two ways:

Z×
n = {x1, x2, . . . , xφ(n)} = {ax1, ax2, . . . , axφ(n)}

Multiply these together to obtain

x1x2 · · · xφ(n) ≡ ax1ax2 · · · axφ(n) ≡ aφ(n)x1x2 · · · xφ(n) (mod n)

Since the xi are all relatively prime to n, we may divide out, thus obtaining the result.

Example 4.4. It should be clear that gcd(a, 35) = 1 ⇐⇒ gcd(a, 5) = 1 and gcd(a, 7) = 1, whence
the set of units modulo 35 is

Z×
35 = Z35 \ {0, 5, 10, 15, 20, 25, 30, 7, 14, 21, 28} =⇒ φ(35) = 35 − 11 = 24

We may now employ this to simplify congruences as we did with Fermat. For instance, suppose you
wanted to solve the congruence equation

x49 ≡ 12 (mod 35)

First observe that if x is a solution and gcd(x, 35) = d, then d |12 and d |35, whence d = 1: it follows
that x is a unit and we may apply Euler’s theorem.

x24 ≡ 1 =⇒ x49 ≡ x ≡ 12 (mod 35)
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Computing Euler’s Function

Rather than a laborious direct computation, we follow the classic number-theory approach: worry
about primes first, then powers of primes, then glue everything together.

φ(p) where p is prime: Since Z×
p = {1, . . . , p − 1}, we plainly have φ(p) = p − 1.

φ(p2): We want to count the remainders in the set {1, 2, 3, . . . , p2} which are coprime to p2: this
means deleting the multiples of p:

φ(p2) = Z×
p2 =

∣∣{1, 2, . . . , p2} \ {p, 2p, 3p, . . . , (p − 1)p, p2}
∣∣ = p2 − p

φ(pk): We again delete the multiples of p:

∣∣∣{1, . . . , pk} \ {ap : 1 ≤ a ≤ pk−1}
∣∣∣ = pk − pk−1 =⇒ φ(pk) = pk

(
1 − 1

p

)

It remains to investigate moduli n which are divisible by more than one prime. Start by looking for
patterns in the table of small values on page 37 and observe that

φ(6) = φ(2)φ(3), φ(10) = φ(2)φ(5), φ(12) = φ(3)φ(4)

Moreover, recalling Example 4.4, we see that φ(35) = 24 = 4 · 6 = φ(5)φ(7) also satisfies the pattern!
We therefore have a hypothesis.

Theorem 4.5. Euler’s function φ is multiplicative:

gcd(m, n) = 1 =⇒ φ(mn) = φ(m)φ(n)

There are many simpler examples of multiplicative functions, for instance

f (x) = 1, f (x) = x, f (x) = x2

though these satisfy the product formula even if m, n are not coprime. The Euler function is more
exotic; it really requires the coprime restriction!
Using the unique prime decomposition, the theorem quickly tells us that

φ(n) = φ(pµ1
1 · · · pµk

k ) = φ(pµ1
i ) · · · φ(pµk

n ) = pµ1
1 (1 − p−1

1 ) · · · pµk
k (1 − p−1

k )

from which we conclude:

Corollary 4.6. φ(n) = n ∏
p|n

(
1 − 1

p

)
= n ∏

p|n
p−1

p

We don’t need the entire decomposition, only the list of distinct primes dividing n.

Example 4.7. 1. φ(72) = φ(8 · 9) = φ(23 · 32) = 72 · 1
2 · 2

3 = 24.

2. φ(1000000) = 1000000 · 1
2 · 4

5 = 400000
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Proving the multiplicative property is a little awkward. To help follow along, consider listing all the
remainders modulo 36 = 9 × 4 in a rectangle:

0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35

The units (coprime to 36) are distributed in six columns containing two each. By rewriting the table
modulo 9 and 4 we can now make an argument for why φ(36) = 12 = 6 × 2 = φ(9)φ(4):

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 0 1 2 3 0
1 2 3 0 1 2 3 0 1
2 3 0 1 2 3 0 1 2
3 0 1 2 3 0 1 2 3

1. The columns being distinct modulo 9, all elements coprime to 9 lie in one of φ(9) = 6 columns.

2. Each column contains a complete set of remainders modulo 4; exactly φ(4) = 2 entries in each
column are therefore coprime to 4.

3. A remainder is coprime to 36 if and only if it is coprime to both 9 and 4: such must be one of
the φ(4) entries in one of the φ(9) columns of interest. We conclude that φ(36) = φ(9)φ(4).

The proof of the multiplicative property is merely an abstraction of this example.

Proof of Theorem 4.5. If either of m, n are equal to 1, then φ(mn) = φ(m)φ(n) is trivial. We therefore
suppose that gcd(m, n) = 1 where m, n > 1 and list all the elements of Zmn in an n × m table:

0 1 2 · · · m − 1
m m + 1 m + 2 · · · m + (m − 1)

2m 2m + 1 2m + 2 · · · 2m + (m − 1)
...

...
...

...
(n − 1)m (n − 1)m + 1 (n − 1)m + 2 · · · (n − 1)m + (m − 1)

We count the φ(mn) entries coprime to mn in a different way, by first observing that

gcd(x, mn) = 1 ⇐⇒ gcd(x, m) = 1 = gcd(x, n)

In the first row of the table there are φ(m) entries coprime to m. Since each column is congruent
modulo m, the entries coprime to m consist precisely of everything in these φ(m) columns.
Now consider the jth column: j, m + j, 2m + j, . . . , (n − 1)m + j. Since gcd(m, n) = 1, no two of these
elements are congruent modulo n:

km + j ≡ lm + j =⇒ km ≡ lm =⇒ k ≡ l (mod n)

Each column consists of a complete set of remainders modulo n, and so φ(n) of the entries in each
column are coprime to n.
Putting this together, we have φ(m) columns coprime to m, each of which contains φ(n) entries
coprime to n: thus φ(m)φ(n) entries in the full table are coprime to both m and n.
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Example 4.8. As a nice example of the formula, we find all n such that φ(n) = 6 = 2 · 3.

Writing n = pµ1
1 · · · pµk

k , we see that 2 · 3 = pµ1−1
1 · · · pµk−1

k (p1 − 1) · · · (pk − 1). The divisors of 6 are
1, 2, 3, 6: if one greater than these is prime, that prime might also be a divisor of n: thus we need
also consider at most one factor of 7: n = 2a3b7c where a, b ≥ 0 and c = 0, 1. Now compute all the
possibilities:

2 · 3 = φ(n) =
(

2a−1

1

)
·
(

2 · 3b−1

1

)
·
(

6
1

)
where we must take one factor from each pair (the bottom row corresponds to a, b, c = 0). It is not
hard to check that only ways to make 6 are

• φ(n) = 1 · 1 · 6 =⇒ n = 203071 = 7

• φ(n) = 21−1 · 1 · 6 =⇒ n = 213071 = 14

• φ(n) = 1 · (2 · 32−1) · 1 =⇒ n = 203270 = 9

• φ(n) = 21−1 · (2 · 32−1) · 1 =⇒ n = 213270 = 18

Counting residues Euler’s function records how many integers in Zn are relatively prime to n.
What about counting residues with other gcd’s with n? Euler’s function does this as well.

Lemma 4.9. If d |n, then φ
( n

d

)
residues a satisfy gcd(a, n) = d.

Proof. Start by observing that gcd(a, n) = d ⇐⇒ gcd
( a

d , n
d

)
= 1. However, by definition, φ

( n
d

)
of

the values 1 ≤ a
d ≤ n

d are coprime to n
d .

Example 4.10. There are φ( 136
4 ) = φ(34) = 16 integers 1 ≤ a ≤ 136 for which gcd(136, a) = 4.

Indeed these are precisely

4, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 132

More surprising perhaps is what happens when you sum the value of Euler’s function over all divi-
sors of an integer.

Theorem 4.11. Summing over all positive divisors d of n, we obtain ∑
d|n

φ(d) = n

Proof. Partition {1, . . . , n} into subsets according to the gcd of each with n. By Lemma 4.9, this
gcd(a, n) = d for exactly φ

( n
d

)
of the numbers. Hence

∑
d|n

φ
(n

d

)
= n

since we’ve counted the whole set! Since the values n
d are simply the divisors of n listed in the reverse

order to d, the sums must be identical: ∑
d|n

φ
( n

d

)
= ∑

d|n
φ(d).
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Example 4.12. With n = 28, we verify that

∑
d|28

φ(d) = φ(1) + φ(2) + φ(4) + φ(7) + φ(14) + φ(28)

= 1 + 1 + 2 + 6 + 6 + 12 = 28

Exercises 4.1 1. Find the values of φ(97) and φ(8800).

2. Prove Lemma 4.1.

3. (a) If n ≥ 3, explain why φ(n) is always even.
(b) Find all values n for which φ(n) is not divisible by 4.

4. Find all n such that φ(n) is the indicated value:

(a) φ(n) = 10 (b) φ(n) = 12 (c) φ(n) = 20 (d) φ(n) = 100

5. Find all values n that solve each of the following equations. If there are none, explain why.

(a) φ(n) = n
2 (b) φ(n) = n

3 (c) φ(n) = n
6

For an extra challenge, find all n for which φ(n) |n.

6. Show that if d |n then φ(d) | φ(n).

7. Suppose gcd(a, b) = d. Use prime decompositions to prove that φ(ab) =
dφ(a)φ(b)

φ(d)

8. (A challenge!) Show that ∑
d|n

(−1)n/d φ(d) =

{
0 if n even
−n if n odd

(Hint: write n = 2km where m is odd and take the k = 0,≥ 1 cases separately)

9. A unit x ∈ Zn (i.e. gcd(x, n) = 1) is a primitive root modulo n if the smallest exponent k such that
xk ≡ 1 (mod n) is k = φ(n).

(a) Find a primitive root modulo 7. Modulo 14.
(b) Show that 8 does not have any primitive roots.
(c) If x is a primitive root modulo n, prove that the set of units in Zn is given by

{x, x2, . . . , xφ(n)}
10. Recall the discussion of riffle-shuffling from the previous chapter.

(a) Show that repeatedly shuffling a pack of 2m cards always eventually returns the pack to
its initial position.

(b) Let n ≥ 1 be the minimum number of shuffles required to return the deck to its original
order.

i. Compute n when 2m = 4, 6, 8, 10, 12, 14.
ii. Prove that n | φ(2m + 1).

(Hint: apply the division algorithm to φ(2m + 1) and n)
(c) Investigate what happens if you try to shuffle an odd number of cards. Or if you shuffle

so that the bottom card (labelled 1) starts on the bottom?
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4.2 The Chinese Remainder Theorem

In this section we see how to solve simultaneous congruence equations. This is straightforward to see
with a small example.

Example 4.13. Solve the simultaneous congruences{
x ≡ 4 (mod 50)
x ≡ 15 (mod 33)

Any solution x simultaneously satisfies x = 4 + 50k = 15 + 33l for some integers k, l. Applying the
Euclidean algorithm (or invoking divine intervention), we see that

(k, l) = (22,−33) satisfies 50k + 33l = 11

whence x = 4 + 50 · 22 = 1104 solves the congruences.
We can say a little more, since we know that all suitable k satisfy k = 22 + 33t for some t ∈ Z, and so
all solutions x have the form

x = 4 + 50(22 + 33t) = 1104 + 50 · 33t ≡ 1104 (mod 1650)

We therefore have a unique solution modulo the product of the original moduli.

This pattern holds in general, provided the moduli are coprime.

• Suppose x ≡ a (mod m) and x ≡ b (mod n). Otherwise said,

∃k, l ∈ Z such that x = a + km = b + ln =⇒ km − ln = b − a

• Since gcd(m, n) = 1, we can find suitable k, l using Bézout’s identity: if κm + λn = 1, then

(b − a)κm + (b − a)λn = b − a
=⇒ k = (b − a)κ + nt : t ∈ Z

=⇒ x = a + ((b − a)κ + nt)m ≡ a + (b − a)κm (mod mn)
≡ a(1 − κm) + bκm ≡ aλn + bκm (mod mn) (∗)

Not only do we see that the simultaneous congruence has a unique solution modulo mn, but we have
a nice formula for evaluating it. Before seeing the full result, note that our abstract expression (∗) for
x really does satisfy both congruences:{

aλn + bκm ≡ aλn ≡ a (mod m)

aλn + bκm ≡ bκm ≡ b (mod n)

The observation is that λn ≡ 1 (mod m) and κm ≡ 1 (mod n); that is, we have inverses for m and n
modulo each other.

42



Theorem 4.14 (Chinese Remainder Theorem). Suppose that moduli n1, . . . , nk are pairwise co-
primea. Then the simultaneous congruences

x ≡ b1 (mod n1), x ≡ b2 (mod n2), . . . x ≡ bk (mod nk) (†)

have a unique solution modulo N := n1 · · · nk. Specifically, for each i, define Ni =
N
ni

and compute its
inverse λiNi ≡ 1 (mod ni), then

x ≡ b1λ1N1 + b2λ2N2 + · · ·+ bkλkNk (mod N)

agcd(ni, nj) = 1 whenever i ̸= j

Proof. Plainly gcd(Ni, ni) = 1 since Ni =
N
ni

is the product of all coprime moduli n1 · · · nk except ni.
Bézout’s identity says Ni has an inverse λi modulo ni. Moreover, since j ̸= i =⇒ nj |Ni, we have

λiNi ≡
{

0 (mod nj) if i ̸= j
1 (mod ni)

It is now immediate that the advertised x solves all the congruences (†).
Finally suppose that y also solves the congruences. Then x − y ≡ 0 (mod ni) for all i which, since
the ni are pairwise coprime, forces x ≡ y (mod N).

Examples 4.15. 1. First we revisit Example 4.13 in this language.

x ≡ 4 (mod 50), x ≡ 15 (mod 33)

The moduli 50 and 33 are pairwise coprime so the theorem applies. We compute

N = 50 · 33 = 1650, N1 = 33, N2 = 50 (N1 = mn
m = n and N2 = m in (∗))

We must therefore solve:{
33λ1 ≡ 1 (mod 50) =⇒ λ1 ≡ −3
50λ2 ≡ 1 (mod 33) =⇒ λ2 ≡ 2

(λ1 = λ and λ2 = κ in (∗))

Finally,

x ≡ b1λ1N1 + b2λ2N2 ≡ 4 · (−3) · 33 + 15 · 2 · 50 ≡ 1500 − 396 ≡ 1104 (mod 1650)

2. Find all solutions x ∈ Z to the simultaneous congruences

x ≡ 3 (mod 5), x ≡ 5 (mod 7), x ≡ 2 (mod 8)

Since the moduli 5, 7 and 8 are pairwise coprime the theorem applies and we compute:

N = 5 · 7 · 8 = 280, N1 = 56, N2 = 40, N3 = 35

=⇒


56λ1 ≡ 1 (mod 5) =⇒ λ1 ≡ 1
40λ2 ≡ 1 (mod 7) =⇒ λ2 ≡ 3
35λ3 ≡ 1 (mod 8) =⇒ λ3 ≡ 3

=⇒ x ≡ 3 · 1 · 56 + 5 · 3 · 40 + 2 · 3 · 35 ≡ 978 ≡ 138 (mod 280)
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Non-coprime moduli?

We state without proof the following generalization of the Chinese Remainder Theorem.

Corollary 4.16. A system of congruences (†) may be solved if and only if gcd(ni, nj) | (bi − bj) for
all i ̸= j. In such a case, all solutions are congruent modulo lcm(n1, . . . , nk).

The method is essentially to remove superfluous congruences so that we can apply the Chinese Re-
mainder Theorem.

Example 4.17. The corollary applies to the simultaneous congruences

x ≡ 1 (mod 3), x ≡ 2 (mod 4), x ≡ 8 (mod 10)

the only divisor property we need to check being gcd(4, 10) | (2 − 8).
The final congruence holds if and only if x ≡ 0 (mod 2) and x ≡ 3 (mod 5). The first condition is
unnecessary since it follows from x ≡ 2 (mod 4). We therefore solve the congruence system

x ≡ 1 (mod 3)
x ≡ 2 (mod 4)
x ≡ 3 (mod 5)

=⇒ x ≡ 58 (mod 60) (‡)

using the standard Chinese remainder theorem. Note that the modulus is 60 = lcm(3, 4, 10).

Exercises 4.2 1. Find the solutions to the following simultaneous congruences using the Chinese
remainder theorem.

(a) x ≡ 2 (mod 5), x ≡ 3 (mod 9)
(b) x ≡ 1 (mod 4), x ≡ 4 (mod 15)

2. (a) Do the calculations to solve the simultaneous triple congruence (‡) in Example 4.17.
(b) Solve the triple congruence

x ≡ 3 (mod 4), x ≡ 5 (mod 21), x ≡ 7 (mod 25)

(c) Solve the triple congruence (be careful!)

3x ≡ 9 (mod 12), 4x ≡ 5 (mod 35), 6x ≡ 2 (mod 11)

3. Give x explicitly in terms of b1, . . . , b4 if

x ≡ b1 (mod 2), x ≡ b2 (mod 3), x ≡ b3 (mod 5), x ≡ b4 (mod 7)

4. Find the solutions: note the generalized Corollary 4.16.

(a) x ≡ 1 (mod 3), x ≡ 1 (mod 4), x ≡ 7 (mod 10)
(b) x ≡ 1 (mod 12), x ≡ 4 (mod 21), x ≡ 18 (mod 35)

5. Solve x3 − x + 15 ≡ 0 (mod 63).

(Don’t just list solutions! Consider modulo 7 and 9 then use the Chinese remainder theorem)

6. Prove the (⇒) direction of Corollary 4.16: if the system has a solution, then gcd(ni, nj) | (bi − bj).
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5 Primes

5.1 The Distribution of the Set of Primes

Given the usefulness of primes as the ‘building blocks’ of the integers, we naturally want to investi-
gate how they are distributed: we’d like answers to questions such as the following.

1. How many primes are there?

2. How many primes are there with a certain property? (e.g. congruent to 3 modulo 4)

3. If we have discovered the first n primes, how much larger is the next?

4. Can we write every even integer ≥ 4 as a sum of two primes?

5. Are there infinitely many primes p such that p + 2 is also prime?

6. Does there exist at least one prime between any consecutive squares?

7. Are there infinitely many primes of the form N2 + 1?

The first three questions can, more or less, be answered, whereas the remaining four are famous
conjectures (the Goldbach, Twin Prime, Legendre’s and N2 + 1 conjectures respectively) that have
remained unsolved for over a century.18

The first question has the oldest answer: we earlier saw Euclid’s Theorem stating that there are
infinitely many primes. We can extend his approach to other situations. For example, it is clear that
any prime p ≥ 3 cannot be even and must therefore be congruent to 1 or 3 modulo 4. Consider the
following table of the primes p such that 3 ≤ p ≤ 120, arranged by remainder modulo 4:

p ≡ 1 (mod 4) 5 13 17 29 37 41 53 61 73 89 97 101 109 113 · · ·
p ≡ 3 (mod 4) 3 7 11 19 23 31 43 47 59 67 71 79 83 103 107 · · ·

It appears that the primes are fairly evenly distributed between the two classes, and we might rea-
sonably conjecture that there are infinitely many primes of each type. This is indeed the case.

Theorem 5.1. Infinitely many primes are congruent each to 1 and 3 modulo 4.

Proof of half the Theorem. We modify Euclid’s proof. Suppose that there are finitely many primes con-
gruent to 3 modulo 4: list them as 3, p1, . . . , pn and define

Π := 4p1 p2 p3 · · · pn + 3

Certainly Π ≡ 3 (mod 4) and therefore odd, so all primes dividing it are odd. Note that

x, y ≡ 1 (mod 4) =⇒ xy ≡ 1 (mod 4) (∗)

hence, if all primes dividing Π were congruent to 1, so also would be Π. Plainly Π is divisible by
some prime p ≡ 3 (mod 4). By assumption we have all of these, and there are two possibilities:

1. p = 3 from which 3 | 4p1 p2 p3 · · · pn =⇒ 3 | pi =⇒ pi = 3 for some i; a contradiction.

2. p = pi for some i, in which case p | 3 =⇒ p = 3; again a contradiction.

18Several results which are very close to these have been proved recently, for example the weak Goldbach conjecture
states that every odd integer ≥ 9 is the sum of three odd primes was proved in 2013.
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Before moving on, consider why the proof cannot be modified to show that infinitely many primes
are congruent to 1 modulo 4. One issue is that the corresponding proposition to (∗) is false: in fact

x, y ≡ 3 (mod 4) =⇒ xy ≡ 1 (mod 4)!

and we cannot therefore claim that any Π ≡ 1 (or ≡ 3) is divisible by a prime congruent to 1. Indeed:

• Π := 21 = 3 · 7 ≡ 1 (mod 4) is not divisible by any primes congruent to 1.

• Π := 3 · 7 · 11 = 231 ≡ 3 (mod 4) is not divisible by any primes congruent to 1.

A simple proof of the ≡ 1 part of the Theorem will be given later using quadratic residues.
In fact a much harder and more general result is available.

Theorem 5.2 (Dirichlet). If gcd(a, m) = 1, then infinitely many primes p satisfy p ≡ a (mod m).

Counting Primes Now we turn to the third in our list of questions. To think about this, we intro-
duce the concept of a counting function: a function f : N → N0 for which f (x) is the number of
positive integers less or equal to x satisfying some property. Euler’s totient function φ is an example:

φ(x) = |{n ∈ N≤x : gcd(x, n) = 1}|
Here is another.

Example 5.3. Consider the counting function

f (x) = |{n ∈ N≤x : n ≡ 4 (mod 7)}|

To get a feel for f , compute the first few values:

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
f (x) 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3

It seems reasonable to claim that, for large x, f (x) is approximately a seventh of x. More precisely,

x − 3
7

≤ f (x) <
x + 4

7
=⇒ x − 3

7x
≤ f (x)

x
<

x + 4
7x

Squeeze
=⇒
Thm

lim
x→∞

f (x)
x

=
1
7

There is terminology for this: ‘ f (x) is asymptotic to 1
7 x,’ and we write

f (x) ∼ 1
7

x

Intuitively, f (x) grows like 1
7 x. This is one way of giving precision to the statement, ‘one seventh of

the integers are congruent to 4 modulo 7.’

Armed with our new notation, we consider the asymptotic behavior of the primes.

Definition 5.4. π(x) := |{p : p ≤ x}| is the number of primes less than x.

Theorem 5.5 (Prime number theorem). π(x) ∼ x
ln x . Otherwise said, lim

x→∞
π(x)

x/ ln x = 1.
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A proof is too involved for this course; interpreting the result is tough enough! One approach in-
volves probability: the chance of a random integer in the interval [1, x] being prime is

P
(
y ∈ [1, x] prime

)
=

π(x)
x

≈ 1
ln x

While the expression x
ln x estimates the function π(x), it is, in fact, always an under-estimate. A more

accurate estimate involves an integral, albeit one that needs its own estimation!

π(x) ∼
∫ x

2

1
ln t

dt

Example 5.6. To check the veracity of these claims: consider the 1000th prime p1000 = 7919:

π(7919) = 1000,
7919

ln 7919
≈ 882,

∫ 7919

2

1
ln t

dt ≈ 1016

A little extra algebra tells us that the nth prime should be located around pn ≈ n ln n. Indeed
1000 ln 1000 ≈ 6908, which is a 13% under-estimate.

Exercises 5.1 1. (a) Verify that every even number between 70 and 80 is a sum of two primes.

(b) How many different ways can 70 be written as a sum of two primes 70 = p+ q with p ≤ q?
Repeat the question for 80.

2. (a) Show that if p ≥ 5 is prime, then p ≡ ±1 (mod 6).
(b) Mimic the half-proof of Theorem 5.1 to show that there are infinitely many primes congru-

ent to 5 modulo 6.
(Hint: let Π := 6p1 p2 · · · pn + 5 where p1, . . . , pn ≡ 5 (mod 6))

3. (a) Explain the statement “one-fifth of all numbers are congruent to 2 modulo 5” by using the
counting function

F(x) = |{positive numbers n ≤ x satisfying n ≡ 2 (mod 5)}|
(b) Explain the statement “most numbers are not squares” by using the counting function

S(x) = |{square numbers less than x}|

4. Let n be large. By computing x
ln x when x = n ln n, argue that pn ≈ n ln n is a reasonable estimate

for the value of the nth prime. Use this expression to argue that, for large n,

pn+1 − pn ≈ 1 + ln(n + 1)

Comment on the values of p1000 and p1001.

5. (Hard) Let p be an odd prime and consider the quantity

Ap

Bp
:= 1 +

1
2
+

1
3
+

1
4
+ · · ·+ 1

p − 1
where gcd(Ap, Bp) = 1

(a) Find the value of Ap (mod p) and prove that your answer is correct.
(b) (Even harder - also proves part (a)) Make a conjecture for Ap (mod p2) and prove it.

(Hint: try adding 1
k +

1
p−k in pairs)

47



5.2 Mersenne Primes and Perfect Numbers

While Euclid assures us that the set of primes is infinite, this hasn’t prevented a semi-formal compe-
tition to find the largest known prime. Prior to the advent of computers and mechanical calculators,
the largest verified prime had 39 digits. As of early 2022, the largest known prime is 282,589,933 − 1
with 24,862,048 digits! Such primes have a special name.

Definition 5.7. A Mersenne prime is a prime of the form Mp = 2p − 1 where p is itself prime.

These are named for Marin Mersenne, a 17th century French music theorist, mathematician and
priest.

Examples 5.8. M2 = 22 − 1 = 3, M3 = 23 − 1 = 7, M5 = 25 − 1 = 31, M7 = 27 − 1 = 127. Not
all Mersenne numbers are prime, for instance

M11 = 211 − 1 = 2047 = 23 · 89

In fact most Mersenne numbers are not prime; the current largest known prime is only the 51st

Mersenne prime to be discovered! It is merely conjectured that there are infinitely many of them.

Whenever the ‘world’s largest prime’ is announced, it is usually a Mersenne prime.19 There are
several reasons for this: a simple motivator is the fact that exponentiation quickly provides large
candidates. A related reason is that similar-looking numbers with other bases are never prime:

Theorem 5.9. If P = an − 1 is prime for some a, n ≥ 2, then a = 2 and n is prime: that is, P is a
Mersenne prime.

Proof. If a ≥ 3, then

an − 1 = (a − 1)(an−1 + an−2 + · · ·+ a + 1)

is composite. By a similar factorization, if n = mk is composite, so also is 2n − 1:

2n − 1 = (2m)k − 1 = (2m − 1)((2m)k−1 + (2m)k−2 + · · ·+ 1)

There are many known results about Mersenne primes; look them up if you are interested. We now
turn our attention to an old problem which turns out to be related to Mersenne primes, using it partly
as an excuse to introduce another commonly-used function.

Definition 5.10. Let n ∈ N. Define σ(n) = ∑
d|n

d to be the sum of the (positive) divisors of n.

We say that n is perfect if it equals the sum of its proper (positive) divisors: that is

σ(n) = 2n (= proper divisors + n)

Examples 5.11. 6 = 1 + 2 + 3 and 28 = 1 + 2 + 4 + 7 + 14 are both perfect.

19The Great Internet Mersenne Prime Search is an ongoing collaborative project hunting for such: anyone with a com-
puter can sign up. If you’re the first to find a prime with 100 million digits, $100,000 could be yours!
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We can compute σ(n) similarly to how we evaluated Euler’s function. First observe a simple fact
following from unique prime factorization:

If gcd(m, n) = 1 and d |mn, then d = d1d2 is uniquely a product of divisors d1 |m and d2 |n

(prime factorization!). When m, n are coprime, it is now immediate that

σ(mn) = ∑
d|mn

d = ∑
d1|m, d2|n

d1d2 = ∑
d1|m

d1 · ∑
d2|n

d2 = σ(m)σ(n)

Moreover, the geometric series formula allows us to easily compute σ applied to a prime power:

σ(pµ) =
µ

∑
j=0

pj =
pµ+1 − 1

p − 1

and we’ve now proved the main result:

Theorem 5.12. σ is multiplicative. Moreover, if n = pµ1
1 · · · pµk

k is the prime decomposition of n,
then

σ(n) =
k

∏
j=1

p
µj+1
j − 1

pj − 1

Examples 5.13. The sum of the positive divisors of 260 = 22 · 5 · 13 is

σ(260) =
23 − 1

1
· 52 − 1

4
· 132 − 1

12
= 588

This can tediously be checked since 260 has divisors 1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 260.
Repeating with n = 1000 = 23 · 53, we see that

σ(1000) =
24 − 1
2 − 1

· 54 − 1
5 − 1

= 2340

There is an intimate relation between perfect numbers and Mersenne primes: half of it indeed ap-
pears in Euclid’s Elements.

Theorem 5.14. If 2p − 1 is a Mersenne prime, then 2p−1(2p − 1) is perfect.

Proof. Suppose that Mp = 2p − 1 is a Mersenne prime. Since 2p − 1 is prime,

σ(Mp) = σ(2p−1)σ(2p − 1) =
2p − 1
2 − 1

· (2p − 1 + 1) = 2 · 2p−1(2p − 1) = 2Mp
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For small values of p we have the following table: the numbers increase very quickly!

p 2p − 1 n = 2p−1(2p − 1)
2 3 6 = 1 + 2 + 3
3 7 28 = 1 + 2 + 4 + 7 + 14
5 31 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248
7 127 8128 = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064
13 8191 33,550,336
17 131,072 8,589,869,056

It was conjectured in the middle ages and proved in the 1700’s that all even perfect numbers have this
form.

Theorem 5.15 (Euler). Every even perfect number has the form 2p−1(2p − 1) for some Mersenne
prime Mp = 2p − 1.

Proof. Suppose that n = 2km is an even perfect number, where k ≥ 1 and m is odd. Our goal is to
prove that m is prime; we will do this by showing that σ(m) = m + 1.
Since n is perfect and gcd(2k, m) = 1, we have two expressions for σ(n):

σ(n) =

{
2n = 2k+1m
σ(2k)σ(m) = (2k+1 − 1)σ(m)

=⇒ (2k+1 − 1)σ(m) = 2k+1m

Since 2k+1 − 1 is odd, we see that 2k+1 | σ(m) so that σ(m) = 2k+1α for some α ∈ N. We now have

(2k+1 − 1)α = m

If we can show that α = 1 then we are finished: in such a case

σ(m) = 2k+1 = (2k+1 − 1) + 1 = m + 1

whence m is prime.
To obtain a contradiction, assume that α > 1. Then m is divisible by the distinct divisors 1, α, m. But
then

2k+1α = σ(m) ≥ 1 + α + m = 1 + α + (2k+1 − 1)α = 1 + 2k+1α

Contradiction!
We conclude that m = 2k+1 − 1 is prime. By Theorem 5.9 we see that k + 1 = p must also be prime,
whence m = Mp is a Mersenne prime.

Since only fifty-one Mersenne primes have thus far been discovered, only fifty-one perfect numbers
are known to exist, with the currently known largest having 49,724,095 digits! Of course the con-
jectured infinity of Mersenne primes would also imply the existence of infinitely many even perfect
numbers. It remains unknown whether there are any odd perfect numbers.
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Exercises 5.2 1. Prove that p is prime if and only if σ(p) = p + 1.

2. Suppose that Mp = 2p − 1 is a Mersenne prime. List all the divisors of 2p−1(2p − 1) and use
the geometric sequence formula to explicitly sum them. Hence provide a more explicit proof of
Theorem 5.14.

3. Define τ(n) to be the number of positive divisors of n. Prove that τ is multiplicative and find
a formula for τ(n) in terms of the prime decomposition of n = pµ1

1 · · · pµk
k . Hence or otherwise,

find the number of positive divisors of 1,000,000.

4. If an + 1 is prime for some integers a ≥ 2 and n ≥ 1, show that n must be a power of 2.

(Hints: if n is odd, show that (a + 1) | (an + 1) similarly to the proof of Theorem 5.14. Then write
n = 2m, a2 = b and repeat. . . )

5. Primes of the form Fk = 22k
+ 1 are called Fermat primes.20 For instance

F1 = 5, F2 = 17, F3 = 257, F4 = 65537

(a) If k ≥ 2, prove that the final digit of Fk is 7.
(Hint: Think modulo 2 and 5. What is the period of 2m modulo 5?)

(b) Show that if k ̸= m, then Fk and Fm are coprime.
(Hint: if k > m, show that Fm divides Fk − 2)

6. Suppose n |Mp where p is an odd prime. Prove that n = 2kp + 1 for some integer k.

(Hint: if q is a prime divisor of 2p − 1, think about why p should divide q − 1)

The remaining questions consider the potential impossibility of odd perfect numbers.

7. (a) Show that a power of 3 can never be a perfect number.

(b) More generally, if p is an odd prime, show that pk is not perfect.

8. (a) Show that a number of the form 3i5j can never be perfect.

(b) More generally, if p ≥ 5 is an odd prime, show that the product 3i pj can never be perfect.

(c) Even more generally, show that if p and q are distinct odd primes, then a number of the
form qi pj can never be perfect.

9. (Hard) Show that 3i5j7k is never perfect.

(Hint: consider σ(n) and sums 1 + 3 + 32 + · · · , etc. modulo 4, then think modulo 5)

20Fermat thought that all the Fk might be prime, however Euler (1732) and Clausen/Landry (1855/1880) successively
showed that F5 and F6 are composite with prime factorizations:

F5 = 4,294,967,297 = 641 · 6700417, F6 = 18,446,744,073,709,551,617 = 274,177 · 67,280,421,310,721

These were incredible achievements for the time. As of 2022, no other Fermat primes have been discovered, and only up
to F11 has been completely factored! A distributed computing project similar to GIMPS continues the search. . .
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6 Powers and Roots in Zn

6.1 Successive Squaring and kth Roots

In this chapter, we flesh out two contrasting ideas: Powers are easy, roots (and factorization) are hard.

Example 6.1. To compute 14217 (mod 67), we currently have a couple of options:

1. Reduce the problem via Euler/Fermat 14217 ≡ 143·66+19 ≡ 1419 (mod 67).

2. Hunt for a small power of 14 which has small remainder modulo 67. This could take a while!

For large moduli, these options become markedly less attractive! Instead we try a more systematic
approach where we repeatedly compute squares:

142 ≡ 196 ≡ −5 =⇒ 144 ≡ (−5)2 ≡ 25

=⇒ 148 ≡ 252 ≡ 625 ≡ 22

=⇒ 1416 ≡ 222 ≡ 484 ≡ 15 (mod 67)

Each squaring was easy, and by considering the binary decomposition 19 = 16+ 2+ 1 = 24 + 21 + 20

of the exponent, we now have enough information to compute the answer:

1419 ≡ 1416+2+1 ≡ 15 · (−5) · 14 ≡ 22 (mod 67)

Successive Squaring Algorithm to compute ak (mod m)

1. Take the binary decomposition k = 2r + 2r−1µr−1 + · · ·+ 2µ1 + µ0 where each µj = 0, 1.

2. Repeatedly square modulo m: compute Aj ≡ a2j ≡ A2
j−1 (mod m)

3. Compute ak ≡ Ar Aµr−1
r−1 · · · Aµ0

0 · · · (mod m).

Example 6.2. We compute 673 (mod 25) using the successive squaring algorithm:

1. 73 = 64 + 8 + 1 = 26 + 23 + 20.

2. Starting with A0 = a = 6 we square:

A1 ≡ 62 ≡ 35 ≡ 11 =⇒ A2 ≡ 112 ≡ 121 ≡ −4

=⇒ A3 ≡ (−4)2 ≡ 16 ≡ −9

=⇒ A4 ≡ 162 ≡ 256 ≡ 6 ≡ A0

=⇒ A5 ≡ A1 ≡ 11, A6 ≡ A1 ≡ −4

Notice how the pattern repeats once we reach A4 ≡ A0.

3. 673 ≡ A6A3A0 ≡ (−4) · (−9) · 6 ≡ 16 (mod 25).

For more speed, we could have started with Euler’s Theorem: φ(25) = 5 · 4 = 20, whence

673 ≡ (620)3 · 613 ≡ 623+22+20 ≡ A3A2A0 ≡ (−9) · (−4) · 6 ≡ 16 (mod 25)

However, considering how the original list started repeating, this didn’t save us much time.
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Efficiency While tedious to perform by hand, the algorithm is very efficient for a computer: this is
what we mean by powers are easy.

• The binary expansion of k = µ0 + 2µ1 + 22µ2 + · · ·+ 2r has r + 1 terms if and only if

2r ≤ k < 2r+1 ⇐⇒ r ≤ log2 k < r + 1

This is likely the form in which the computer stores k already!

• Squaring and computing each Aj and the product Aµ0
0 · · · Ar requires r + 1 take the remainder

calculations.

• The algorithm therefore requires approximately log2 k remainder steps to complete; roughly 3.3
times number of digits of k.

• There are many algorithms available for taking the remainder: these are roughly about as effi-
cient as multiplying, so the full algorithm is very efficient indeed!

Slightly faster algorithms even than this are available; even when x, k, m are 100’s of digits long, a
modern computer can evaluate xk (mod b) in microseconds. To really stress a computer, we need
much larger exponents! Here are a few benchmarking times21 where x = 1389 + 1 and m = 1781 + 3
are 100-digit numbers.

27 µs: x10100 ≡ 2811368376719703263528063091846551559031253759668873958264247724126725739585183812656683304446721416

17 ms: x10100,000 ≡ 4488975456548368803859052207045919909802116591225720977576091772560693617724591244737588457285087356

174 ms: x101,000,000 ≡ 892615982890619665980610534874493547494556817553720182073417194047142550414087154521448828227415676

1.78 s: x1010,000,000 ≡ 2225414932073741734978750203003783867698573600388509903995387020623239040547081286262846393211045316

17.7 s: x10100,000,000 ≡ 3349869250081483676357258995295278747886045025380645413804988720714016105105145445830489542782366876

Note how the computing time is roughly proportional to the number of digits in the exponent: each
calculation (100000 → 1 million → 10 million → 100 million digits) takes approximately 10 times as
long as the previous.

Computing kth roots modulo m

The contrasting problem of finding kth roots is much harder, in that computers cannot do it efficiently.
Again we motivate via an example.

Example 6.3. Solve the congruence x5 ≡ 7 (mod 26): that is, find the 5th roots of 7 modulo 26.

• First note that gcd(7, 26) = 1 and that any solution x must therefore be a unit:

d | x and d |26 =⇒ d |7 =⇒ d = 1 =⇒ gcd(x, 26) = 1

• By Euler’s Theorem: xφ(26) ≡ x12 ≡ 1 (mod 26).

• Now hunt for a multiple of 5 which is congruent to 1 modulo φ(m) = 12. In this case

52 = 25 = 2φ(26) + 1 =⇒ x ≡ x1+2φ(26) ≡ x25 ≡ 75 ≡ 11 (mod 26)

In the last step we may appeal to successive squaring to compute 75 or simply hack at it. . .

21These times were obtained running Sage on a single core of an Intel i5-9600K desktop CPU, clocked at 4.4 GHz.
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We lucked out in the example: the final step relied on being able to solve the congruence

5u ≡ 1 (mod 12)

which we know we can do because gcd(5, 12) = 1. When trying to take kth roots in general, this step
may not be possible. At least we have identified the critical ingredient necessary for being able to
find a unique kth root.

Theorem 6.4. Suppose that gcd(b, m) = gcd
(
k, φ(m)

)
= 1. Then the congruence equation xk ≡ b

(mod m) has a unique solution, which can be found as follows:

1. Compute φ(m).

2. Find u ∈ N such that ku ≡ 1 (mod φ(m)).

3. Evaluate x ≡ bu (mod m).

Proof. First observe that any purported solution x must be a unit (gcd(x, m) = 1): if not, then b ≡ xk

and m would have a common divisor greater than 1, contradicting our assumptions.
Step 2 is possible since gcd

(
k, φ(m)

)
= 1; we can therefore write ku = 1 + λφ(m) for some λ ∈ N.

Since any suitable x is a unit, we can now apply Euler’s Theorem

bu ≡ (xk)u ≡ x1+λφ(m) ≡ x (mod m)

Uniqueness is clear since we found x ≡ bu by doing the same thing (raising to the power u) to both
sides of the congruence xk ≡ b (mod m).

Example 6.5. Find the unique solution to x283 ≡ 29 (mod 42)
We trivially verify that gcd(29, 42) = 1 and φ(42) = 12. We therefore need to solve

283u ≡ 1 (mod 12)

This is straightforward, since 283 ≡ 7 (mod 12), we easily spot that u ≡ 7 is a solution.a Now
compute

x283 ≡ 29 =⇒ x283·7 ≡ 297 (mod 42)

=⇒ x ≡ x1+165φ(42) ≡ 297 (mod 42)

It remains to compute the final power: applying the successive squaring algorithm, we have 7 =
20 + 21 + 22, and

A0 = 29, A1 = 292 = 169 = 1, A2 = 1

whence

x ≡ 297 ≡ 29 · 1 · 1 ≡ 29 (mod 42)
aIf this makes you nervous, use the Euclidean algorithm to solve 7u = 1 + 12λ, or indeed 283 = 1 + 12λ:

283 = 12 · 23 + 7
12 = 7 · 1 + 5

7 = 5 · 1 + 2
5 = 2 · 2 + 1

 =⇒ gcd(283, 12) = 1 = 12 · 118 − 283 · 5 =⇒ 283 · 7 = 1 + 12 · 165

where we reversed the algorithm to obtain the final result.
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Efficiency Even when a unique kth root exists, finding it is typically much slower than computing
a kth power. Comparing the steps in Theorem 6.4:

1. Computing φ(m) is very, very slow; you essentially need to factorize m.

2. The Euclidean algorithm is fast to implement.

3. This can be done using successive squaring; also fast.

When m is large the discrepancy in computing speeds becomes enormous.
The same modern desktop considered earlier took 216 seconds to factorize the 100-digit base dis-
cussed previously:

1781 + 3 = 22×5×107×20381297×5040257978377×104871651613718213326855552979737×201189896476403174943819047900047481422801171

This example isn’t ideal since if a large number is lucky enough to be divisible by several small
primes, it can often be factorized very quickly. For a more sensible benchmark, here are the times
taken by the computer to factorize several semiprimes pq, where the primes p, q were of comparable
size.

pq digits 60 62 64 66 68 70 72 74 76 78 80
Factorization time (s) 6.58 6.46 13.6 22.9 33.5 37.3 65.8 124 151 350 694

When the factorization time is graphed logarithmically, the
data appears linear. The best-fitting straight line therefore
represents an exponential model:

T(n) ≈ exp(0.2297n − 12.1665)

By this metric, we might expect that factoring a 100-digit
semiprime would require 13 1

2 hours, a 150-digit semiprime
150 years!

100

101

102

103
tim

e
(s

)

60 64 68 72 76 80
pq digits

Non-unique kth roots It is reasonable to ask what can happen in when either or both of the con-
ditions gcd(b, m) = 1 = gcd

(
k, φ(m)

)
= 1 fails. The short answer is that anything is possible; you

could have no kth root, a unique root, or several roots. Some of the details are in the exercises.

Example 6.6. Modulo 6, we have gcd(φ(6), 4) = 2 ̸= 1. By computing fourth powers modulo 6:

x 0 1 2 3 4 5
x4 0 1 4 3 4 1

we see that the congruence x4 ≡ b (mod 6) has a unique solution if b = 0, 3, two solutions if b = 1, 4,
and no solutions if b = 2, 5.
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Exercises 6.1 1. Use the method of successive squaring to compute each of the following:

(a) 513 (mod 23) (b) 12260 (mod 1000) (c) 28749 (mod 1147)

(Use a calculator!)

2. For each congruence, verify the hypotheses of the Theorem 6.4 and solve the congruences:

(a) x83 ≡ 15 (mod 322) (b) x329 ≡ 452 (mod 1147)

3. We search for kth roots of b modulo m in situations where at least one of the standard conditions
fails:

gcd(b, m) ̸= 1 or gcd
(
k, φ(m)

)
̸= 1 (∗)

(a) If p is an odd prime, show that 1 has exactly two square-roots modulo p. Which of the
conditions (∗) fails in this case?

(b) Investigate the cube-roots of b modulo 8 for each remainder b (see, e.g., Example 6.6). How
many such b have a cube-root? Are they unique? What do the gcd conditions (∗) say in
each case? When could we have used the theorem on unique kth roots?

(c) Repeat for the fourth-roots of b modulo 8.

(d) Repeat for the cube-roots of b modulo 10.
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6.2 The RSA Cryptosystem

Perhaps the modern-world’s most utilised cryptosystem, it is likely that you (indirectly) use some
version of RSA22 every day, when your phone or computer connects securely to another, for instance
using https. Here is how the method works.

Encoding 1. Start with distinct primes p, q and build the semiprime m = pq.

2. Calculate φ(m) = (p − 1)(q − 1).

3. Choose an integer s such that 1 < s < φ(m) and gcd
(
s, φ(m)

)
= 1.

4. Encode a numerical message by mapping x 7→ xs (mod m).

Decoding This is based on the following.

Theorem 6.7. Let u ∈ N satisfy us ≡ 1 (mod φ(m)). Then, for all x, (xs)u ≡ x (mod m).

Proof. Since m = pq is a semiprime, we have

xsu ≡ x (mod m) ⇐⇒
{

xsu ≡ x (mod p), and
xsu ≡ x (mod q)

Since su ≡ 1 (mod φ(m)) we see that su = 1 + j(p − 1)(q − 1) for some j ∈ Z. If x ≡ 0 (mod p),
then Fermat’s little theorem tells us that

xsu ≡ x · (xp−1)j(q−1) ≡ x (mod p)

The result is plainly trivial if x ≡ 0, and the calculation is similar for the other modulus q.

The process is very simple: think of s for ‘scramble’ and u for ‘unscramble.’

x encode7−−−→ xs (mod m)
decode7−−−→ (xs)u ≡ x (mod m)

As we saw in the previous section, even if m, s, u are 100+ digits long, these calculations are very fast
for modern computers.
The values m, s are known as the public key: these are all you need to encode messages. Indeed these
can be made freely available so that anyone can encode.
To decode messages, one also requires the private key u. Provided you keep this number secret, only
you can decode messages sent to you.
One implementation involves a group of friends each of whom have different keys. They keep se-
cret their private keys u, but share their public keys s, m with the group. Then all friends can send
messages to each other but, once encoded, each can only be decoded by the intended recipient.

22The acronym is formed from the initials of Rivest, Shamir and Adleman who discovered the system while working at
MIT in 1977. It was in fact first described in 1973 by Clifford Cocks while working for GCHQ, the British equivalent of the
US National Security Agency. Cocks’ discovery was classified, even though, due to the lack of available computing power,
it was deemed to have no practical application.
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Examples 6.8. 1. For a very simple example, we start by encoding a message via the obvious
substitution A 7→ 1, B 7→ 2, etc.:

I T S A L L G R E E K T O M E
9 20 19 1 12 12 7 18 5 5 11 20 15 13 5

If we choose the semiprime m = 5 × 7 = 35, then φ(m) = 4 × 6 = 24, and we can choose, say,
s = 5. We then encode by mapping x 7→ x5 (mod 35):

9 7→ 95 ≡ 812 · 9 ≡ 112 · 9 ≡ 16 · 9 ≡ 4 (mod 35)

20 7→ 205 ≡ 20 19 7→ 195 ≡ 24, 1 7→ 15 ≡ 1, . . .

resulting in the string of numbers

4, 20, 24, 1, 17, 17, 7, 23, 10, 10, 16, 20, 15, 13, 10

We could also translate the encoded message back into letters:

D, T, X, A, Q, Q, G, W, J, J, P, T, O, M, J

To decode, we require u such that 5u ≡ 1 (mod 24); that is u = 5 (it doesn’t matter for us that
this equals s!). Again compute

45 ≡ 43 · 42 ≡ 64 · 42 ≡ −6 · 42 ≡ −24 · 4 ≡ 44 ≡ 9 (mod 35)

205 ≡ 20, 245 ≡ 19, . . .

to recover the original string of numbers and message ITSALLGREEKTOME.

2. Suppose you intercept the message

59, 4, 57, 2, 82, 4, 86, 43, 4, 43, 57, 4

which you know has been encoded using the public key s = 11, m = 119. You also know that
the message may be read via the translation

11 ↔ A, 12 ↔ B, . . . , 36 ↔ Z

To crack the code, our first job is computing the totient: m = 7 × 17 =⇒ φ(m) = 6 · 16 = 96.

We now need to find the private key, which satisfies 11u ≡ 1 (mod 96). A relatively short
application of the Euclidean algorithm says that

1 = 11 · 35 − 4 · 96 =⇒ u = 35

We now compute:a

59 7→ 5935 ≡ 19 mod 119

etc. The full decode is

19, 29, 19, 30, 25, 24, 30, 18, 15, 30, 15, 29, 30

which you’re welcome to translate into letters if you’re so inclined. . .
aIf you don’t want to beg the help of a calculator, use the successive squaring algorithm: the binary decomposition is

35 = 25 + 21 + 20, which yields

A0 = 59, A1 = 30, A2 = −52, A3 = −33, A4 = 18, A5 = −33

=⇒ 5935 ≡ A5 A1 A0 ≡ −33 · 30 · 59 ≡ 19 (mod 119)

Don’t knock it: it’s what your computer has to do for every element of the code!
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Speed and Security of the RSA system

Encoding and decoding (once in possession of the private key) require only the computation of pow-
ers modulo m. While our examples used very small moduli, modern applications use semiprimes
with 300 or more digits. While unfeasible in 1973, for modern computers such work is trivial.

Now suppose that you are in possession of the public key m, s and want to crack an encoded message.
You need to do two things:

1. Find φ(m); equivalently factorize m = pq. As we saw in the previous section, for moduli in the
300 digit range this is essentially impossible in any reasonable time-frame.23

2. Find u ∈ N such that us ≡ 1 (mod φ(m)). Employing the Euclidean algorithm requires no
more than 2 log2 φ(m) applications of the division algorithm and some back substitution. Even
for 300 digit numbers, this can be completed in microseconds provided φ(m) is known.

While resilient against general attack, RSA is not foolproof. Its main drawback is that it is a table
cipher: if 18 7→ 11 during encoding, then 18 is always mapped to 11. If a decoded message is inter-
cepted, a hacker then knows how to decode any future messages without calculation. Long messages
reduce security since common combinations such as ‘e’ and ‘the’ might be guessable if they appear
frequently. Correctly guessing even a few letters makes decoding a full message much easier. Of
course, with very large moduli perhaps the entire message can be transmitted using only one digit!
RSA can also easily be combined with other cryptographic methods for greater security.

Exercises 6.2 1. For each message and public key m, s, find the private key u and decode the
message, using 1 7→ A, 2 7→ B, etc. to translate back to letters.

(a) When m = 35 and s = 11 you receive 28, 4, 18, 18, 10, 2, 4, 14, 28, 28, 4, 2, 1, 6, 6, 10, 24

(b) When m = 143 and s = 103 you receive 63, 1, 63, 63, 12, 113, 27, 123, 63, 1, 63, 141, 141, 27, 72

2. (a) Let m = p1 · · · pn be a product of distinct primes, and assume that gcd(k, φ(m)) = 1 so
that ∃u with ku ≡ 1 (mod φ(m)). Prove that xk ≡ b (mod m) has unique solution x ≡ bu

(mod m), regardless of whether gcd(b, m) = 1.
(Hint: Carefully read the proof of Theorem 6.7)

(b) Consider the congruence x5 ≡ 6 (mod 9). Show that you can find u satisfying 5u ≡ 1
(mod φ(9)), but that x ≡ 6u is not a solution to the required congruence. Can you identify
where the distinct prime condition was needed in part (a)?

(c) Solve the congruence x49 ≡ 3 (mod 1155)

3. In Example 6.8, we saw that the public and private keys s, u were equal (both being 5). Relative
to the semiprime modulus m = 35, show that this is always the case; regardless of which s you
choose, you will always have u = s.

4. Modern implementations typically replace Euler’s totient function φ(m) = (p − 1)(q − 1) with
Λ(m) := lcm(p − 1, q − 1).

Given a public key m, s where gcd(s, Λ(m)) = 1, show that decoding may be accomplished by
finding the private key satisfying us ≡ 1 (mod Λ(m)).

23RSA Labs used to offer cash prizes for factoring large semiprimes (the RSA-numbers). As of 2020, the largest yet
factorized has 250 digits, requiring supercomputer resources equivalent to over 1000 years on a single desktop core.

59



7 Quadratic Residues

Recall our earlier discussion of kth roots:

If gcd(a, m) = 1 = gcd
(
k, φ(m)

)
, then xk ≡ a (mod m) has a unique solution.

This result contains an almost glaring omission: (when m ≥ 3) φ(m) is always even, so the simplest
type of root, square roots, never fit the pattern! In this chapter we focus on the equation x2 ≡ a
(mod p) where p is an odd prime, and consider the question of when a has a square root modulo p.

7.1 Squares Modulo an Odd Prime

Definition 7.1. Let p be an odd prime. A non-zero residue a is a quadratic residue (QR) modulo p if
x2 ≡ a (mod p) has a solution. Otherwise it is a quadratic non-residue (QNR, or just NR).

Examples 7.2. Here are all possible equations modulo p = 3, 5 and 7, and whether each a is a
quadratic residue modulo p.

a equation solutions QR?
1 x2 ≡ 1 (mod 3) x ≡ 1, 2 ✓
2 x2 ≡ 2 (mod 3) none X

a equation solutions QR?
1 x2 ≡ 1 (mod 5) x ≡ 1, 4 ✓
2 x2 ≡ 2 (mod 5) none X
3 x2 ≡ 3 (mod 5) none X
4 x2 ≡ 4 (mod 5) x ≡ 2, 3 ✓

a equation solutions QR?
1 x2 ≡ 1 (mod 7) x ≡ 1, 6 ✓
2 x2 ≡ 2 (mod 7) x ≡ 3, 4 ✓
3 x2 ≡ 3 (mod 7) none X
4 x2 ≡ 4 (mod 7) x ≡ 2, 5 ✓
5 x2 ≡ 5 (mod 7) none X
6 x2 ≡ 6 (mod 7) none X

The first thing you should observe is that precisely half p−1
2 of the non-zero remainders are quadratic

residues. This follows immediately from a simple calculation.

Lemma 7.3. If p is an odd prime, then the numbers 02, 12, 22, . . . ,
(

p−1
2

)2
are distinct modulo p.

Proof. x2 ≡ y2 =⇒ (x − y)(x + y) ≡ 0 (mod p). By unique factorization, we have x ≡ ±y.

Partly in view of the Lemma, it is often useful when discussing quadratic residues to consider re-
mainders as lying in the set of least residues {0,±1,±2, . . . ,± p−1

2 }: i.e. with minimal absolute value.
Note also that the Lemma really requires a prime modulus (from which unique factorization follows).
For composite moduli we don’t expect distinct values from square: for instance

12 ≡ 32 (mod 8)

Indeed, modulo 8, the only equations x2 ≡ a with solutions are when a ≡ 0, 1, 4. Even for non-zero
remainders, only two in seven have square roots modulo 8.
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A second property that might take a little longer to spot is the multiplicativity of quadratic residues:
for example 2 and 4 are quadratic residues modulo 7, as is 2 · 4 ≡ 1. With a proof of this in mind, we
make a useful definition.

Definition 7.4. Given an odd prime p and an integer a, define the Legendre symbol

(
a
p

)
:=


0 if p | a
1 if a is a QR modulo p
−1 if a is a QNR modulo p

Examples 7.5. Look at the above tables:
( 1

3

)
=

(−1
5

)
=

( 2
7

)
= 1 and

(−2
3

)
=

(−2
5

)
=

( 3
7

)
= −1

Legendre symbols will prove very useful for checking whether we have a quadratic residue. To see
how, we develop a little algebra.

Theorem 7.6. If p is an odd prime and a, b ∈ Z, then:

1. a ≡ b (mod p) =⇒
(

a
p

)
=

(
b
p

)
2. p ∤ a =⇒

(
a2

p

)
= 1

3.
(

ab
p

)
=

(
a
p

) (
b
p

)
: otherwise said QR×QR=QR, QR×NR=NR, NR×NR=QR.

This follows as a corollary of a more complex result later, but for now it is worth a direct proof.

Proof. Parts 1 and 2 are immediate from the definition. In particular, note that

a is a QR ⇐⇒ ∃c ∈ Z×
p such that a ≡ c2 (mod p)

For part 3, the statement is trivial if either or both p | a or p | b. Otherwise, we treat the three cases
separately: suppose throughout that c, d are units (non-zero modulo p).

(a) c2d2 ≡ (cd)2, so the product of QR’s is a QR.

(b) By part (a), c2n ≡ d2 =⇒ n ≡ (dc−1)2 is a QR. The contrapositive says that if n is a NR, so also
is c2n.

(c) Let n be a NR. Since n ̸≡ 0, we have a bijective mapa

µ : x 7→ nx : Z×
p → Z×

p (the inverse is µ−1(x) := n−1x)

For any QR c2, part (b) says that µ(c2) = nc2 is an NR. Since (Lemma 7.3) the sets of QR’s and
NR’s have equal cardinality, it follows that µ maps the QR’s bijectively to the NR’s and must
therefore map NR’s back to QR’s. In particular, if m is a NR, then µ(m) = mn is a QR.

aIf you’ve done group theory, this argument should remind you of the comparison of even and odd cycles in the
symmetric group Sn, where we see that the sets of such have the same cardinality. Indeed we are really proving that the

function f (a) =
(

a
p

)
is a homomorphism of multiplicative groups f : Z×

p → {±1}.
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Example 7.7. To check whether 27 is a QR modulo 61, we compute the Legendre symbol.(
27
61

)
=

(
32

61

)(
3

61

)
=

(
3

61

)
We are left to decide whether 3 is a QR modulo 61; equivalently, we want to solve x2 ≡ 3 (mod 61).
By inspection, x ≡ 8 is a solution (as is x ≡ −8 ≡ 53), whence 27 is a QR modulo 61.
We can actually go further:

82 ≡ 3 =⇒ (3 · 8)2 ≡ 33 =⇒ 242 ≡ 27 (mod 61)

It follows that the solutions to the original congruence are

x2 ≡ 27 (mod 61) ⇐⇒ x ≡ ±24 ≡ 24, 37 (mod 61)

While Legendre symbols were undoubtedly helpful for our example, they weren’t quite enough. We
still needed to be able to spot that 3 was a quadratic residue, though thankfully this was easy in the
example. In general we can’t rely on being able to spot a solution; we therefore need some method
of computing a Legendre symbol directly.

Example 7.8. Suppose we want to find the value of
( 2

101

)
: equivalently we are asking whether

x2 ≡ 2 (mod 101) has a solution. Simply trying all possible values of x is a bad idea! Instead,
suppose that there was a solution x: plainly it would have to be a unit modulo 101 and so we could
apply Fermat’s little theorem:

x2 ≡ 2 =⇒ 1
FℓT≡ x100 ≡ 250 (mod 101)

A short calculation (successive squaring?) should convince you that 250 ≡ −1, whence 2 is a non-
residue and

( 2
101

)
= −1.

The approach works in general:

Theorem 7.9 (Euler’s Criterion). If p is an odd prime, then
(

a
p

)
≡ a

p−1
2 (mod p).

Proof. If p | a, both sides are trivially zero.

If a is a QR, then a ≡ b2 for some b ∈ Z×
p , whence a

p−1
2 ≡ bp−1 ≡ 1 (mod p) by Fermat’s little

theorem.
Now consider the equation y

p−1
2 ≡ 1 (mod p). By Lagrange, this has at most p−1

2 solutions. However,
all p−1

2 quadratic residues (Lemma 7.3) are already solutions! Hence

a is a quadratic residue ⇐⇒ a
p−1

2 ≡ 1 (mod p)

Finally observe that Fermat’s little theorem may be factorized (uniquely modulo p):

0 ≡ ap−1 − 1 ≡
(

a
p−1

2 − 1
) (

a
p−1

2 + 1
)

(mod p)

We conclude that a is a non-residue ⇐⇒ a
p−1

2 ≡ −1 (mod p).
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Examples 7.10. 1. 3 is a QR modulo 13 since 3
13−1

2 ≡ 36 ≡ 272 ≡ 12 ≡ 1 mod 13. It is easy to see
that the solutions to x2 ≡ 3 mod 13 are x ≡ 4, 9.

2. Returning to Example 7.7 and applying successive squaring,(
3
61

)
≡ 3

61−1
2 ≡ 330 ≡ 32+4+8+16 ≡ 9 · 20 · (−27) · (−3) ≡ 1 (mod 61)

Is −1 a Quadratic Residue? Here is a straightforward application of Euler’s criterion where we see
for precisely which primes −1 is a quadratic residue.

Theorem 7.11. If p is an odd prime, then −1 is a QR ⇐⇒ p ≡ 1 (mod 4). Indeed(−1
p

)
= (−1)

p−1
2 =

{
1 if p ≡ 1 (mod 4)
−1 if p ≡ 3 (mod 4)

As a surprising by-product, we obtain a proof of a result promised earlier in the course.

Theorem 7.12. There are infinitely many primes congruent to 1 modulo 4.

The idea is to construct an impossible solution to some x2 ≡ −1 (mod q) where q ≡ 3 (mod 4).

Proof. Suppose that p1, . . . , pn constitute all primes congruent to 1 modulo 4. Define

x := 2p1 · · · pn and Π := x2 + 1

Certainly Π is divisible by some prime q, which is plainly odd and cannot be one of the primes
p1, . . . , pn. We conclude that q ≡ 3 (mod 4). However, we now have

Π ≡ 0 =⇒ x2 ≡ −1 (mod q)

which contradicts Theorem 7.11.

Is 2 a Quadratic Residue? This is harder than dealing with −1, though a nice answer is still avail-
able, based on a sneaky trick attributable to Gauss.24

Examples 7.13. 1. We multiply the even remainders modulo 23 in two ways:

2 · 4 · 6 · · · 22 ≡ 211 · 11! (mod 23)

2 · 4 · 6 · · · 22 ≡ 2 · 4 · · · 10 · 12 · 14 · · · 22
≡ 2 · 4 · · · 10 · (−11) · (−9) · · · (−1)

≡ (−1)6 · 11! (mod 23)

It follows that 211 ≡ 2
23−1

2 ≡ (−1)6 ≡ 1 (mod 23), whence 2 is a quadratic residue modulo 23.

24Carl Friedrich Gauss (1777–1855) was arguably the most consequential mathematician in history, and a major contrib-
utor to number theory, which he considered the Queen of Mathematics.
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2. Let p = 37. This time p−1
2 = 18 so we we break the even remainders at 18:

218 · 18! ≡ 2 · 4 · 6 · · · 36
≡ 2 · 4 · · · 18 · 20 · 22 · · · 36
≡ 2 · 4 · · · 18 · (−17) · (−15) · · · (−1)

≡ (−1)9 · 18! (mod 37)

=⇒ 2
37−1

2 ≡ 218 ≡ (−1)9 ≡ −1 (mod 37)

We conclude that 2 is a non-residue modulo 37.

For the main result, we need only do this in the abstract!

Theorem 7.14. If p is an odd prime, then 2 is a QR ⇐⇒ p ≡ 1, 7 (mod 8). Otherwise said,(
2
p

)
=

{
1 if p ≡ 1, 7 (mod 8)
−1 if p ≡ 3, 5 (mod 8)

Proof. Since p is odd, we may define the integer P = p−1
2 . Multiply together the even remainders

modulo p to obtain

2 · 4 · 6 · · · (p − 1) = 2P · 1 · 2 · · · P = 2PP! (∗)

Now consider the same product, split at P:

2 · 4 · 6 · · ·︸ ︷︷ ︸
≤P

· · · (p − 5)(p − 3)(p − 1)︸ ︷︷ ︸
>P

≡ 2 · 4 · 6 · · · · · · (−5) · (−3) · (−1)

To finish the proof, we need to make sure that the right side has the form (−1)m · P! and we need to
count the number of negative signs m. There are two cases.

P = 2k is even: Plainly p = 2P + 1 = 4k + 1 ≡ 1 (mod 4). There are P = 2k even remainders
modulo p, whence the split is as follows:

2 · 4 · 6 · · · (p − 1) ≡ 2 · 4 · 6 · · · P︸ ︷︷ ︸
k terms ≤P

· (P + 2) · · · (p − 5)(p − 3)(p − 1)︸ ︷︷ ︸
k terms >P

≡ 2 · 4 · · · P ·
(
− (P − 1)

)
· · · (−3) · (−1)

≡ (−1)k · P! (mod p)

where we used the fact that (P + 2)− p = P + 2 − 2P − 1 = −(P − 1). Combined with (∗), we
see that

2
p−1

2 ≡ 2P ≡ (−1)k ≡
{

1 if k is even ⇐⇒ p ≡ 1 (mod 8)
−1 if k is odd ⇐⇒ p ≡ 5 (mod 8)

P = 2k + 1 is odd: This is similar and we leave it as an exercise.
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Example 7.15. To check whether x2 ≡ 95 (mod 127) has any solutions, observe that(
95
127

)
=

(−32
127

)
=

(−1
127

)(
42

127

)(
2

127

)
=

(−1
127

)(
2

127

)
= (−1) · 1 = −1

where we used that fact that

127 = 15 · 8 + 7 =⇒
{

127 ≡ 3 (mod 4)
127 ≡ 7 (mod 8)

We conclude that 95 is a non-residue modulo 127.

Similar results can be obtained for other values though, as we’ll see, such aren’t really necessary. . .

Exercises 7.1 1. Use the methods of this section to decide which are quadratic residues:

(a) 7 (mod 11) (b) 6 (mod 31) (c) 39 (mod 41)

2. (a) Suppose that a is a quadratic residue modulo p, where p ≡ 3 (mod 4). Check that the
solutions of x2 ≡ a (mod p) are x = ±a

p+1
4 (mod p).

(b) Find all solutions to the congruence x2 ≡ 7 (mod 31).
(c) Still working with p ≡ 3 (mod 4), if p ∤ a and a is a quadratic non-residue modulo p, what

is the value of
(

a
p+1

4

)2
?

3. (a) Find the prime decomposition of 924.
(b) Check that 37 is a quadratic residue modulo each odd prime dividing 924. Also check that

x2 ≡ 37 (mod 2k) is solvable where 2k is the largest power of 2 dividing 924.
(c) How many solutions has the congruence x2 ≡ 37 (mod 924)? Why?

4. In the manner of question 3, decide whether the following have solutions and, if so, how many.

(a) x2 ≡ 3 (mod 143)
(b) x2 ≡ 2 (mod 437)
(c) x2 ≡ 393 (mod 1564)

5. Suppose p ∤ a. Show that if p ≡ 1 (mod 4), then both or neither of ±a are quadratic residues
modulo p. Similarly, if p ≡ 3 (mod 4), show that exactly one of ±a are quadratic residues.

6. Compute 22048 (mod 4097). What does this tell you about whether 4097 is prime?

(Hint: 4096 is a power of 2. . . )

7. Complete the proof of Theorem 7.14 where p is an odd prime and P = p−1
2 = 2k + 1 is odd.

8. Show that if p ∤m, then
p−1
∑

a=1

(
ma
p

)
= 0.

(Hint: show first that ∑
(

a
p

)
= 0, then recall that multiplication by m permutes residue classes. . . )

9. Let a be given and suppose that n is a value assumed by the polynomial f (x, y) = x2 − ay2

where x, y ∈ Z. Prove that, for every odd prime divisor p of n, either p | x or
(

a
p

)
= 1.

65



7.2 Quadratic Reciprocity

For a result which is essentially unknown outside mathematics, the law of quadratic reciprocity has
a surprising number of distinct proofs: around 200 are claimed, arguably more than any other result.
Gauss himself gave at least six in his lifetime, the first when he was only 18, and the law is said to
have been his favorite theorem. So why did he like it so much? Have a read and judge for yourself. . .

Theorem 7.16 (Quadratic Reciprocity). If p ̸= q are prime, then(
p
q

)
·
(

q
p

)
= (−1)

p−1
2 · q−1

2

Otherwise said,
(

q
p

)
= −

(
p
q

)
⇐⇒ both p, q ≡ 3 (mod 4).

Reciprocity encompasses the idea that if q says something about p, then p says something about q:

If we know whether (or not) x2 ≡ p (mod q) has a solution, then we know whether (or
not) x2 ≡ q (mod p) has a solution.

That these equations should have anything to do with each other is surprising to say the least!
We’ll give a proof of the law later, but for now we start by seeing its utility.

Examples 7.17. 1. Suppose we are asked to decide whether −1500 is a QR modulo 997. We start to
compute, using all our knowledge from the previous section:(−1500

977

)
=

(−1
997

)(
3

997

)(
22

997

)(
53

997

)
(Theorem 7.6, part 3)

=

(−1
997

)(
3

997

)(
5

997

)
(Theorem 7.6, part 2)

=

(
3

997

)(
5

997

)
(Theorem 7.11, since 997 ≡ 1 (mod 4))

Without reciprocity, we’d be stuck with Euler’s criterion (Theorem 7.9) and the nasty evaluation
of 34985498 (mod 997). Instead we simply flip the Legendre symbols and continue!(−1500

977

)
=

(
997
3

)(
997
5

)
(reciprocity, since 997 ≡ 1 (mod 4))

=

(
1
3

)(
2
5

)
= −1 (Theorem 7.14)

We conclude that −1500 is a quadratic non-residue modulo 997.

2. We use reciprocity three times: note that 997 ≡ 1 and 43, 563 ≡ 3 (mod 4):(
563
997

)
=

(
997
563

)
=

(−129
563

)
=

(−1
563

)(
3

563

)(
43

563

)
(factorize: Theorem 7.6)

= (−1)(−1)
(

563
3

)
(−1)

(
563
43

)
= −

(
2
3

)(
4
43

)
= 1 (Theorem 7.14)

Note that this calculation doesn’t help us solve the congruence x2 ≡ 563 (mod 997): it only
tells us that solutionsa exist!

aIn fact x ≡ ±470 ≡ 470, 527 (mod 997)
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Jacobi Symbols

Legendre symbols have a huge weakness: the reciprocity formula only applies when you have two
primes. For large numbers you might need to do a lot of factorizing or perform several computations
of the form a

p−1
2 . With a small extension of the definition, however, this problem can be overcome

and the computation of Legendre symbols becomes purely algorithmic.

Definition 7.18. Let a be an integer and n an odd positive integer. If n = pλ1
1 · · · pλk

k is the prime

decomposition, then we define the Jacobi Symbol
( a

n

)
in terms of the Legendre symbols

(
a
pi

)
( a

n

)
:=

(
a
p1

)λ1

· · ·
(

a
pk

)λk

If n is an odd prime, then
( a

n

)
is plainly a Legendre symbol. Moreover, the basic properties of Legen-

dre symbols and the reciprocity results (Theorems 7.6, 7.11, 7.14 & 7.16) translate over almost imme-
diately:

Theorem 7.19. If a, b ∈ Z and m, n are odd positive integers, then;

1. a ≡ b (mod n) =⇒
( a

n

)
=

(
b
n

)
2. gcd(a, n) = 1 =⇒

(
a2

n

)
= 1

3.
(

ab
n

)
=

( a
n

)(
b
n

)
4.

( a
mn

)
=

( a
m

) ( a
n

)
5.

(−1
n

)
=

{
1 if n ≡ 1 (mod 4)
−1 if n ≡ 3 (mod 4)

6.
(

2
n

)
=

{
1 if n ≡ 1, 7 (mod 8)
−1 if n ≡ 3, 5 (mod 8)

7. If gcd(m, n) = 1, then

(m
n

) ( n
m

)
= (−1)

m−1
2 · n−1

2 =

{
1 ⇐⇒ m or n ≡ 1 (mod 4)
−1 ⇐⇒ m and n ≡ 3 (mod 4)

The only real disadvantage of working modulo a composite n is that a Jacobi symbol being 1 doesn’t
correspond to the existence of solutions to a quadratic congruence.

Example 7.20.
(

2
15

)
=

(
2
3

)(
2
5

)
= (−1)(−1) = 1, however x2 ≡ 2 (mod 15) has no solution!

We won’t pursue this further, instead using Jacobi symbols mainly to assist with the computation of
Legendre symbols.
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Proof. Arguments are barely required for parts 1–4: these follow from the corresponding propertied
of Legendre symbols and the Definition. Parts 5 and 6 are exercises.
We content ourselves with a proof of the main reciprocity law (part 7).
Let m = p1 · · · pk and n = q1 · · · ql be the prime decompositions, where there are no primes in
common between the lists and repeats are permitted. Then, by decomposing (parts 3, 4) and applying
the quadratic reciprocity law,

(m
n

) ( n
m

)
=

( p1 · · · pk

n

)(
n

p1 · · · pk

)
=

k

∏
i=1

( pi

n

)(
n
pi

)
=

k

∏
i=1

(
pi

q1 · · · ql

)(
q1 · · · ql

pi

)
=

k

∏
i=1

l

∏
j=1

(
pi

qj

)(
qj

pi

)
= ∏

i,j
(−1)

pi−1
2 · qj−1

2

Since the only way a negative can appear is if both pi ≡ qj ≡ 3 (mod 4), we count the number of
such primes in each of m and n. Suppose there are s and t such primes in m and n respectively, then

(m
n

) ( n
m

)
= (−1)st =

{
1 ⇐⇒ s or t even ⇐⇒ m or n ≡ 1 (mod 4)
−1 ⇐⇒ s and t odd ⇐⇒ m and n ≡ 3 (mod 4)

If you’re unsure why the final implications hold, revisit the discussion of primes modulo 4 from
earlier in the course.

The usefulness of Jacobi symbols is that we can apply the rules without checking primality! By combin-
ing the rules, we can easily compute the value of any Legendre (or Jacobi) symbol, where the only
required factorizations are to divide out negatives and 2’s.

Example 7.21. We know that 317 is prime, and we want to check whether 246 is a quadratic residue.
We compute, indicating which part of the theorem we’re using each time.(

246
317

)
=

(
2

317

)(
123
317

)
= −

(
123
317

)
(parts 3, 6: since 317 ≡ 5 (mod 8))

= −
(

317
123

)
(part 7: since 317 ≡ 1 (mod 4))

= −
(

71
123

)
=

(
123
71

)
(parts 1, 7: since 71, 123 ≡ 3 (mod 4))

=

(
31
71

)
= −

(
71
31

)
(parts 1, 7: since 31, 71 ≡ 3 (mod 4))

= −
(

9
31

)
= −1 (parts 1 and 2)

Therefore 246 is a quadratic non-residue modulo 317.

It is easy to see how to state this algorithmically: to find
( a

n

)
:

1. Reduce a modulo n, factor out any copies of
(−1

n

)
,
( 2

n

)
or

(
b2

n

)
and evaluate.

2. Apply the main reciprocity formula to each remaining factor.

3. Repeat steps 1 & 2 until all terms in step 1 are evaluated.
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Primality Testing

Recall Euler’s criterion: if n is an odd prime and n ∤ a, then
( a

n

)
≡ a

n−1
2 (mod n). If we are not sure

whether n is prime, we could compute both sides of this for some a. . .

Definition 7.22 (Solovay–Strassen Primality Test). Let n be an odd positive integer. A witness to
the compositeness of n is any unit a ∈ Z×

n for which( a
n

)
̸≡ a

n−1
2 (mod n)

If n is composite, any unit a for which
( a

n

)
≡ a

n−1
2 (mod n) is termed a liar, and n a pseudoprime to

base a.

One witness is all you need to prove that n is composite! Even if n is very large, both sides of the
congruence can be found rapidly with a computer. Moreover, if n is composite, at least half of the
units modulo n can be shown to be witnesses, so you shouldn’t have to try for long.
As a test for primality, Solovay–Strassen is only probabilistic. If you try four values of a and find no
witnesses, then you have roughly a 1

24 = 1
16 chance that n is composite; ten trials without a witness

and the probability drops to roughly 1
1024 . Of course this is no good for proving that a large number

is prime: you would have to try half the remainders without finding a witness before this could be
your certain conclusion!

Examples 7.23. 1. We test to see if n = 3599 is composite by choosing a = 2. Use successive
squaring to compute

2
n−1

2 ≡ 21799 ≡ 946 (mod 3599)

Plainly this isn’t ±1 and so cannot be the value of a Lagrange/Jacobi symbol: a = 2 is therefore
a witness and n is composite. For completion, since 8 |200 we can quickly verify that

n ≡ −1 ≡ 7 (mod 8) =⇒
(

2
3599

)
= 1

In fact n = 59 × 61, but we did not need this information.

2. Given the 1000-digit number n = 10999 + 7, we have a computer verify that, modulo n,

a
n−1

2 ≡
( a

n

)
for each a ∈ {2, 3, 5, 7, 11}

We conclude that n is likely prime with a probability of at least 1 − 1
25 = 2047

2048 = 99.95% (this
took the computer only 200 µs!). In fact n is prime; the smallest 1000-digit prime.

There are many other primality tests of varying degrees of complexity and predictive power. Com-
puter packages are likely to rely on the Miller–Rabin test and its extension, the Baillie-PSW test.
While neither test can prove conclusively that a given candidate is prime, no counter-examples (pseu-
doprimes) are known for the latter.
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Gauss’ Lemma and the Proof of Quadratic Reciprocity

With a view to proving the quadratic reciprocity law, we revisit the idea of least residues (page 60).

Definition 7.24. Let p be an odd prime and define P = p−1
2 . Given a ∈ Z, its least residue modulo p

is the unique value r such that

a ≡ r (mod p) and − P ≤ r ≤ P

If r < 0 we say that a has negative least residue. Now define a counting function; if p ∤ a let,

µ(a, p) =
∣∣{x ∈ {a, 2a, 3a, . . . , Pa} : x has negative least residue modulo p}

∣∣
Example 7.25. To find µ(8, 13), start with P = 13−1

2 = 6 and compute

{8k : 1 ≤ k ≤ 13−1
2 } = {8, 16, 24, 32, 40, 48} ≡ {−5, 3,−2, 6, 1,−4} =⇒ µ(8, 13) = 3

One purpose of the function µ is to provide a general way of computing Legendre symbols.

Theorem 7.26 (Gauss’ Lemma).
(

a
p

)
= (−1)µ(a,p)

Examples 7.27. 1. Continuing the previous example, we verify that(
8
13

)
=

(
22

13

)(
2

13

)
= −1 = (−1)µ(8,13)

2. To compute µ(17, 11), note that 17 ≡ −5 (mod 11) and build the set

{17, . . . , 5 · 17} ≡ {−5, 1,−4, 2,−3} (mod 11) =⇒ µ(17, 11) = 3

Similarly, 11 ≡ −6 (mod 17), whence

{11, . . . , 8 · 11} ≡ {−6, 5,−1,−7, 4,−2,−8, 3} (mod 17) =⇒ µ(11, 17) = 5

By Gauss’ Lemma, neither x2 ≡ 17 (mod 11) nor x2 ≡ 17 (mod 11) have solutions.

The proof is little more than a generalization of part of Theorem 7.14.

Proof. Since a is invertible modulo p, the (least) residues a, 2a, 3a, . . . , Pa are distinct.
Moreover, for any x, y ∈ {1, . . . , P}, if the least residues of ax, ay were negative each other,

ax ≡ −ay =⇒ x ≡ −y (mod p)

is a contradiction. We conclude that, modulo p, we have {a, 2a, 3a, . . . , Pa} = {(±1), (±2), . . . , (±P)}
where precisely one of each ± remainder appears. Plainly µ(a, p) is the number of negative signs
appearing in the second representation. To finish, simply multiply together the remainders, cancel
P!, and recall Euler’s criterion (Theorem 7.9):

a
p−1

2 P! ≡ a · 2a · 3a · Pa ≡ (−1)µ(a,p)P! =⇒ a
p−1

2 ≡ (−1)µ(a,p) (mod p)
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In view of Gauss’ Lemma, the quadratic reciprocity formula may now be rewritten as(
p
q

)(
q
p

)
= (−1)µ(p,q)+µ(q,p) = (−1)

p−1
2 · q−1

2

To complete the proof, it suffices to show that

µ(p, q) + µ(q, p) ≡ p − 1
2

· q − 1
2

(mod 2)

We do this somewhat sneakily: given distinct primes p, q construct the hexagon H as shown.

All points inside H satisfy four inequalities

1
2
< x <

p
2

1
2
< y <

q
2

− q
2
< py − qx <

p
2

The circled point has co-ordinates
(

p+1
4 , q+1

4

)
We count the number of points with integer co-
ordinates inside H in two ways, thereby recover-
ing both sides of the desired congruence. 0 1

2

0

1
2

p
2

q
2

p+1
4

q+1
4

py = qx

py = qx − q
2

py = qx + p
2

Here are two concrete examples where the integer points are plotted. We color the points differently
depending on their location relative to the diagonal. Our goal is to relate the numbers of these points
to values of Gauss’ µ-function.

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8
p = 17, q = 11

µ(p, q) + µ(q, p) = 3 + 5 is even

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9
p = 19, q = 11

µ(p, q) + µ(q, p) = 3 + 4 is odd

The main result follows by observing some simple properties regarding the distribution of the integer
points: see if you can make the relevant hypotheses before turning the page!
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Lemma 7.28. The integer points in H satisfy the following:

1. Symmetry around the circled point
(

p+1
4 , q+1

4

)
. The number of integer points is odd precisely

when the circled point has integer co-ordinates: when p, q ≡ 3 (mod 4).

2. (a) No points lie on the boundaries or the diagonal of H.

(b) µ(p, q) points lie below the diagonal.

(c) µ(q, p) points lie above the diagonal.

By part 2, the number of integer points in H is µ(p, q) + µ(q, p). By part 1, this total is congruent to
p−1

2 · q−1
2 (mod 2). The Lemma therefore establishes the required formula and completes the proof

of the quadratic reciprocity law (Theorem 7.16).

Proof. 1. The reflection of (x, y) in the circled point is given bya(
p + 1

2
− x,

q + 1
2

− y
)

Since p, q are odd, this has integer co-ordinates if and only if (x, y) does.

It is moreover straightforward to check that the reflection maps opposite edges of H to each
other: the circled point is therefore the centroid of H (and of the integer points therein).

2. (a) This is an easy exercise.
(b) Suppose (x, y) ∈ H is an integer point lying below the diagonal. Since (x, y) ∈ H, we have

1
2
< x <

p
2

,
1
2
< y <

q
2

To lie below the diagonal means

− q
2
< py − qx < 0 ⇐⇒ py has negative least residue modulo q

Conversely, suppose y is an integer satisfying 1
2 < y < q

2 and such that py has negative
least residue modulo q. Precisely one positive integer x (> 1

2 ) satisfies the inequality
− q

2 < py − qx < 0. Moreover,

qx < py +
q
2

=⇒ x <
p
q

y +
1
2
<

p
q
· q

2
+

1
2
=

p + 1
2

=⇒ x ≤ p − 1
2

<
p
2

since x is an integer. We therefore obtain a point (x, y) ∈ H lying below the diagonal.
We conclude that there are precisely as many integer points below the diagonal as there
are elements with negative least residue modulo q in the set{

py : y = 1, . . . , q−1
2

}
=

{
p, 2p, 3p, . . . , q−1

2 p
}

Otherwise said, there are µ(p, q) integer points below the diagonal.
(c) Being almost identical to part (b), we omit the argument.

aIf you’re unsure why, observe that the midpoint of (x, y) and its reflection is
(

p+1
4 , q+1

4

)
. Alternatively, think vector

thoughts and compute (x, y) + 2
[(

p+1
4 , q+1

4

)
− (x, y)

]
. . .
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Exercises 7.2 1. Recall Exercise 7.21. Compute the Legendre symbol
( 246

317

)
without using Jacobi

symbols: i.e. factorize 246 fully, and use reciprocity only if both terms are prime.

2. Evaluate the Legendre symbols
( 503

773

)
and

( 501
773

)
using any method you like.

3. (a) Pretend you don’t know the prime factorization of 91. Compute
( 9

91

)
and 945 (mod 91).

What do you observe? Does this say anything about whether 91 is prime or composite?
(b) Now compute

( 2
91

)
and 245 (mod 91). What happens this time?

4. (a) Identify the witnesses and liars for the Solovay–Strassen test modulo 15.
(b) Explain why there are at least two liars for every odd composite modulus n.
(c) Let n be composite and suppose a is a witness and b a liar for n:

gcd(a, n) = 1 = gcd(b, n), a
n−1

2 ̸≡
( a

n

)
and b

n−1
2 ≡

(
b
n

)
(mod n)

By considering ab, prove there are at least as many witnesses as liars.
(This explains the 1

2k probability estimation in the Solovay–Strassen test)

5. A simpler primality test involves checking only that a
n−1

2 ≡ ±1. Comment on your answer to
question 3b, and compare what happens with the simple test and Solovay–Strassen for a = 8
modulo n = 21.

6. Compute the value of µ(12, 17) by finding the least residues of the set {12, 24, . . . , 12 · 8}. Con-
firm that your set of least residues and the value of µ fits with Gauss’ Lemma.

7. Revisit Theorems 7.11 and 7.14, where we computed the values of
(
−1
p

)
and

(
2
p

)
. What are the

values of µ(−1, p) and µ(2, p)?

8. Use the law of quadratic reciprocity to prove that, for any prime p ≥ 5, we have(
3
p

)
=

{
1 ⇐⇒ p ≡ 1 or 11 (mod 12)
−1 ⇐⇒ p ≡ 5 or 7 (mod 12)

9. Verify the claim about the opposite sides of H being reflected to each other in the proof of
Lemma 7.28. Also prove part 2(a) of the same result.

10. We prove parts 5 and 6 of Theorem 7.19.

(a) Suppose that n = p1 · · · pkq1 · · · ql is written as a product of primes where each pi ≡ 1
and qj ≡ 3 (mod 4). Prove that n ≡ (−1)l (mod 4). Hence establish the formula for the
Jacobi symbol

(−1
n

)
.

(b) (Harder) Prove the formula for the Jacobi symbol
( 2

n

)
.

(Hint: write n as a product of primes congruent to each of 1, 3, 5 and 7 modulo 8 and think about
their products modulo 8)

11. (For a bit of fun to end the term)

(a) Find all the 2-digit integers x whose squares end in x (i.e. 10 ≤ x ≤ 99).
(b) Show that the only 3-digit integers x whose squares end in x are 376 and 625.
(c) See how far you can generalize the problem. . .
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