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1 Continued Fractions

We consider a generalization of the Euclidean Algorithm which has ancient historical roots and yet
still has relevance and applications today.

1.1 Continued Fraction Representations of Rational Numbers

We start with a simple example, messing with the fraction 61
14 . First write the fraction as an integer

plus a proper fraction:

61
14

= 4 +
5

14

Now flip the second fraction upside down and repeat until we can go no further:

61
14

= 4 +
5

14
= 4 +

1
14
5

= 4 +
1

2 + 4
5

= 4 +
1

2 +
1
5
4

= 4 +
1

2 +
1

1 +
1
4

We stop because the final fraction 1
4 is the reciprocal of an integer. We call this representation a

continued fraction. Rather than write the whole thing out, we use a simpler notation:

61
14

= [4; 2, 1, 4]

Now for the promised tie-in with the Euclidean Algorithm: to compute gcd(61, 14);

61 = 4 · 14 + 5
14 = 2 · 5 + 4
5 = 1 · 4 + 1
4 = 4 · 1

The digits of the continued fraction are precisely the sequence of quotients1 from the Euclidean Algo-
rithm.

1Recall that at each stage we apply the Division Algorithm: if a > b > 0 then there exist unique integers, the quotient q
and remainder r which satisfy

a = qb + r and 0 ≤ r < b



What’s the Point? Why might we want such a convoluted expression for a fraction? One answer is
that by truncating a continued fraction we obtain approximations to our original fraction. For example:

[4] = 4

[4; 2] = 4 +
1
2
=

9
2
= 4.5

[4; 2, 1] = 4 +
1

2 + 1
1

= 4
1
3
=

13
3

= 4.333 . . .

[4; 2, 1, 4] = 4 +
1

2 +
1
5
4

= 4 +
1

2 +
1

1 +
1
4

=
61
14

= 4.35714 . . .

These approximations alternate below and above the final fraction, becoming successively closer. In
fact, in a certain sense, 13

3 is the best rational approximation to 61
14 among all fractions with denomina-

tor at most 13 (see Exercise 4). Finding rational approximations with small denominators was crucial
in the days before calculators.

We shall shortly prove that the coefficients of a continued fraction are always the quotients from
the Euclidean Algorithm: try to do this yourself before seeing the proof in a few pages. Before being
more formal, we make a historical digression to consider one of the oldest discussions of irrationality,
for it is in the realm of irrational numbers that continued fractions really show their worth.

Exercises 1. Compute the continued fraction representation of 105
39 using the direct method in this

section.

2. Evaluate the rational number with continued fraction [2; 1, 5, 1, 2].

3. If x = [c1; c2, . . . , cn], find the continued fraction for 1
x .

4. Investigate the claim that 13
3 is a good rational approximation to 61

14 among all fractions whose
denominator is less than 14. Specifically, for each q ∈ {1, . . . , 13} find the integer p for which∣∣∣ p

q −
61
14

∣∣∣ is minimal and then compute
∣∣p− 61

14 q
∣∣, the error weighted by the size of the denomi-

nator. What do you notice?
(If you’re feeling adventurous, automate this using a computer)

5. Among all fractions with denominator at most 202, what do you think is the best rational ap-
proximation to 254

203 weighted by the size of the denominator? Why?

1.2 Incommensurability and the Ancient Greeks (non-examinable)

The ancient Greek mathematician Theaetetus (417–369 BC) developed a notion of irrationality which
formed the basis of the longest and most difficult book (Book X) of Euclid’s Elements (c. 300 BC).
Irrationality presented a great philosophical challenge to the Greeks since they only accorded positive
integers the status of number. These would then be used to compare lengths by menas of ratios. For
instance, two rods might be described as having lengths in the ratio 17 : 5. To us, of course, this is
really the ratioal number 5

17 in disguise. The problem for the Greeks was that some lengths are not in
integer ratios.
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Two lengths/rods `1 and `2 were considered commensurable if there was some sub-length m and
positive integers a, b such that `1 = am and `2 = bm. Otherwise said, the lengths are in proportion

`1 : `2 = a : b

In modern times, we happily equate the concepts of length and numberand say that the ratio `1
`2

= a
b

is rational. To the Greeks however, there remained some questions:

1. If two lengths are commensurable,2 how do we find a common sub-length?

2. If two lengths are incommensurable, how do we show that no common sub-length exists?

Theaetetus answer to these questions is essentially the Euclidean Algorithm. If `1 : `2 is in an integer
ratio, then the greatest common divisor of `1 and `2 provides a suitable common sublength. Here is
an example with two initial lengths `1 and `2:

`1
`2 `1 = 3`2 + `3
`3 `2 = 2`3 + `4
`4 `3 = 2`4

`1 = 17`4
`2 = 5`4

In this case, `4 is a common sub-length. By choosing units so that `4 = 1 we see that we’ve applied
the Euclidean Algorithm to calculate gcd(17, 5) = 1.

The point is that the Euclidean Algorithm works perfectly well when applied to lengths, not just
integers. Indeed, to the Greeks, the Division Algorithm was interpreted thus; if `1 > `2 are rods of
positive length, there exists a unique integer q ≥ 1 and a length r for which,

1. `1 may be measured by q copies of `2 plus a single copy of r: `1 = q`2 + r.

2. r is shorter than `2: 0 ≤ r < `2.

We can now give Theaetetus’ definition of commensurability.

Definition 1.1. Lengths `1, `2 are commensurable if the Euclidean Algorithm terminates, in which
case a common sub-length is the last length in the sequence.

Lengths are incommensurable if the Algorithm never terminates.

In modern language, `1, `2 are commensurable ⇐⇒ `1
`2
∈ Q.

Here is an example of a simple result in this language.

Theorem 1.2. Suppose that lengths `, m are in the golden ratio; that is `+ m : ` = ` : m. Then `
and m are incommensurable. Otherwise said, the golden ratio is irrational.

2In the days of Pythagoras (c.590–495 BC) many falsely assumed that all lengths were commensurable. The understand-
ing that the side and diagonal of a square are incommensurable (i.e.

√
2 6∈ Q) caused a crisis of faith for the Pythagoreans.
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Proof. Clearlya `
m = `+m

` > 1 since m > 0. However, if ` ≥ 2m we obtain a contradiction

2 ≤ `

m
=

`+ m
`

=
2`+ 2m

2`
≤ 3`

2`
=

3
2

(∗)

It follows that the first quotient in the algorithm is 1 and that the first line reads

` = 1 ·m + (`−m)

Now continue;

`−m
m

=
`

m
− 1 =

m
`

(†)

says that the ratio m
`−m is also golden! The second line of the algorithm therefore has quotient 1, as do

all subsequent lines: the algorithm continues ad infinitum, with all quotients equalling 1.

aFor clarity, we write in fractions so that the golden ratio reads `+m
` = `

m . This would have made no sense to the Greeks,
since length and number were distinct concepts. To be more historically accurate, we should write (∗) as

2 : 1 ≤ ` : m = `+ m : ` = 2`+ 2m : 2` ≤ 3` : 2` = 3 : 2

and (†) using subtraction of ratios{
`+ m : ` = ` : m
` : ` = m : m

=⇒ m : ` = `−m : m

The Greeks did not have symbolic algebra, but this method of computing with ratios was well understood.

You’ve probably seen the famous picture: each step of the al-
gorithm can be visualized as deleting a square from a golden
rectangle, leaving a smaller (similar) golden rectangle.

The geometric approach of the Greeks is very difficult for us
to follow. Indeed it is very hard to resist writing

ϕ =
`

m
=⇒ ϕ = 1 + ϕ−1 =⇒ ϕ2 − ϕ− 1 = 0

=⇒ ϕ =

√
5 + 1
2

`

`

m

The Greeks, of course, had no notion of
√

5, so the above was essentially how they proceeded: fun!

Motivated by Theaetetus, we try a continued fraction approach for irrational numbers. If the golden
ratio produces an infinite sequence of quotients equalling 1, is it reasonable to write the following?

ϕ =

√
5 + 1
2

= [1; 1, 1, 1, . . .] = 1 +
1

1 +
1

1 +
1

1 + · · ·
The answer will prove to be ‘yes,’ though the ellipses · · · present a difficulty: we are really making a
claim about the convergence of some sequence to ϕ. . .
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1.3 Continued Fractions and Irrational Numbers

We define the concept of a continued fraction for any real number.

Definition 1.3. Suppose x ∈ R. Define a pair of sequences (cn), (Rn) inductively

c1 := bxc R1 := x− c1

cn :=
⌊

1
Rn−1

⌋
Rn :=

1
Rn−1

− cn

The notation bxc is the floor of x: the greatest integer less than or equal to x. If any term Rn is zero,
then the sequences terminate. The continued fraction representation of x is written [c1; c2, c3, . . .].

Examples 1.4. 1. It is worth revisiting our first example in this language.

c1 =

⌊
61
14

⌋
= 4 R1 =

61
14
− 4 =

5
14

c2 =

⌊
14
5

⌋
= 2 R2 =

14
5
− 2 =

4
5

c3 =

⌊
5
4

⌋
= 1 R3 =

5
4
− 1 =

1
4

c4 = b4c = 4 R4 = 4− 4 = 0

This produces the same sequence and continued fraction representation we saw earlier.

2. Now we try this for the golden ratio.

If ϕ =
√

5+1
2 , then 1 < ϕ < 2, whence c1 = 1 and R1 =

√
5−1
2 . Then

c2 =

⌊
2√

5− 1

⌋
=

⌊√
5 + 1
2

⌋
= 1 =⇒ R2 =

√
5− 1
2

Both sequences have already begun to repeat, hence we obtain the expected continued fraction

[1; 1, 1, 1, 1, 1, 1, . . .]

3. Consider x =
√

13. Since 3 <
√

13 < 4 we have c1 = 3 and R1 =
√

13− 3. Thus

1
R1

=
1√

13− 3
=

√
13 + 3

4
= 1 +

√
13− 1

4
=⇒ c2 = 1

Rinse and repeat:

n 1 2 3 4 5 6 7 8
cn 3 1 1 1 1 6 1 1
Rn
√

13− 3
√

13−1
4

√
13−2
3

√
13−1
3

√
13−3
4

√
13− 3

√
13−1
4

√
13−2
3

Since the sequences (Rn), (cn) have started to repeat, it follows that they will continue to do so.
The continued fraction representation of

√
13 is therefore the repeating sequence

[3; 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, . . .]
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4. The first few terms of the continued fraction expansion for π can be found similarly, though
you’ll need a computer/calculator. Unlike the previous examples, there is no ongoing pattern
to find.

c1 = bπc = 3 =⇒ R1 = π − 3

c2 =

⌊
1

π − 3

⌋
= 7 =⇒ R2 =

1
π − 3

− 7 =
22− 7π

π − 3
(note the 22 and 7. . . )

c3 =

⌊
π − 3

22− 7π

⌋
= 15 =⇒ R3 =

π − 3
22− 7π

− 15 =
106π − 333

22− 7π

c4 =

⌊
22− 7π

106π − 333

⌋
= 1 =⇒ R4 = · · ·

We obtain the continued fraction [3; 7, 15, 1, . . .].

These examples suggest the following:

Theorem 1.5. Suppose x ∈ R.

1. The continued fraction representation of x has finite length if and only if x ∈ Q.

2. If x = a
b is rational, then it equals its continued fraction representation which moreover consists

of the sequence of quotients from the Euclidean Algorithm applied to the pair (a, b).

3. If x is any real number, its continued fraction representation is the sequence of quotients found
by applying the Euclidean Algorithm (à la Theaetetus) to the pair (x, 1).

Before proving this, it is worth noting a couple of points. If c1 = x, then x is an integer and its (very
boring) continued fraction is itself. The first quotient c1 in a continued fraction is negative if and only
if x is negative: all the other quotients must be positive.

Proof. Suppose first that x = a
b ∈ Q+. Write the Euclidean Algorithm for finding gcd(a, b) = rn−1:

a = c1b + r1 0 ≤ r1 < b

b = c2r1 + r2 0 ≤ r2 < r1

r1 = c3r2 + r3 0 ≤ r3 < r2

...

rn−3 = cn−1rn−2 + rn−1 0 ≤ rn−1 < rn−2

rn−2 = cnrn−1

Rearranging each line for the quotient, we obtain

ck =
rk−2

rk−1
− rk

rk−1
=

⌊
rk−2

rk−1

⌋
(∗)
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since 0 ≤ rk < rk−1 and ck is an integer. Now compute:

a
b
= c1 +

r1

b
= c1 +

1
b
r1

= c1 +
1

c2 +
r2
r1

= c1 +
1

c2 +
1
r1
r2

= c1 +
1

c2 +
1

c3 +
r3
r2

= c1 +
1

c2 +
1

· · ·+ rn−2
rn−1

= c1 +
1

c2 +
1

c3 +
1

· · ·+ cn

= [c1; c2, . . . , cn]

Thus any positive rational number a
b has a finite continued fraction expansion whose coefficients are

precisely the quotients in the Euclidean Algorithm. Conversely, if a continued fraction terminates,
then it is certainly rational. We have therefore proved parts 1 and 2.

For part 3, x− bxc is less than 1, and so

x = bxc · 1 + (x− bxc) = c1 · 1 + R1

is precisely the first line of Theaetetus’ Algorithm applied to the pair (x, 1). The next line is then

1 =

⌊
1

R1

⌋
· R1 +

(
1−

⌊
1

R1

⌋
R1

)
= c2 · R1 + R1R2

with positive remainder R1R2 = R1

(
1

R1
−
⌊

1
R1

⌋)
< R1. And the third:

R1 =

⌊
1

R2

⌋
· R1R2 + R1

(
1−

⌊
1

R2

⌋
R2

)
= c3 · R1R2 + R1R2R3

with positive remainder R1R2R3 = R1R2

(
1

R2
−
⌊

1
R2

⌋)
< R1R2. Without being too formal (prove by

induction if you like), we see that the kth line has the form

R1 · · · Rk−2 = ck · R1 · · · Rk−1 + R1 · · · Rk

This proves 3: indeed the kth remainder in the Algorithm is the product R1 · · · Rk.

Exercises 1. Compute the continued fraction representations of the following fractions using the
method of this section.

(a)
25
11

(b)
632
13

(c)
13
632

2. Find the continued fraction representations of
√

2 and
√

3.

3. Use a calculator/computer to find six terms of the continued fraction representation of e.

4. (Hard!) Give a more formal proof that a
b = [c1; . . . , cn] by induction.

(Hint: let b = r0 and prove that a
b = [c1; c2, . . . , ck +

rk
rk+1

] for all k ≤ n− 1: use (∗)!)
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1.4 Convergents of Continued Fractions

We’ve already seen that a continued fraction representation of a rational number is equal to that
number. To see that the same is true for irrational numbers, we need a notion of convergence.

Definition 1.6. Given the sequence of quotients (cn), define new sequences (pn), (qn) via

p0 = 1 p1 = c1 pn = cn pn−1 + pn−2

q0 = 0 q1 = 1 qn = cnqn−1 + qn−2

The ratio pn
qn

is the nth convergent of the continued fraction [c1; c2, c3, . . .].

Example 1.7. For x = 61
14 , the sequences are

n 0 1 2 3 4
cn 4 2 1 4
pn 1 4 9 13 61
qn 0 1 2 3 14

To help remember the formulæ, look at the pattern for how the red numbers produce the blue:

9 = 2 · 4 + 1

Observe that the sequence of convergents(
pn

qn

)
=

(
4,

9
2

,
13
3

,
61
14

)
are precisely the approximations obtained on page 2 by truncating the continued fraction.

The same thing can be seen with any of our other examples: indeed we have the following result.

Theorem 1.8.
pn

qn
= [c1; . . . , cn]

The result is easier to prove in the form of a two-part lemma.

Lemma 1.9. Let c1, . . . , cn be integers such that the continued fraction [c1; . . . , cn] exists.a We can
describe the continued fraction in terms of a matrix multiplication.

1.
(

c1 1
1 0

)(
c2 1
1 0

)(
c3 1
1 0

)
· · ·
(

cn 1
1 0

)
=

(
A B
C D

)
=⇒ [c1; . . . , cn] =

A
C .

2. In terms of the sequences (pn) and (qn), we have
(

A B
C D

)
=

(
pn pn−1
qn qn−1

)
.

aStrictly c2, . . . , cn are positive integers, and cn ≥ 2. Part 1 holds for any real numbers provided we never divide by
zero: something like [2; 1,−1] = 2 + 1

1+ 1
−1

clearly cannot be allowed!
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Proof. We prove part 1 by induction; part 2 is left as an exercise.
For the base case, observe that [c1] = c1 = c1

1 = A
C when

( c1 1
1 0

)
=
(

A B
C D

)
.

Now fix n and assume that any continued fraction of length n− 1 satisfies the condition

[c2; . . . , cn] =
A
C

where
(

c2 1
1 0

)(
c3 1
1 0

)
· · ·
(

cn 1
1 0

)
=

(
A B
C D

)
Then

[c1; c2, . . . , cn] = c1 +
1

[c2; . . . , cn]
= c1 +

C
A

=
c1A + C

A

However(
c1 1
1 0

)(
A B
C D

)
=

(
c1A + C c1B + D

A B

)
By induction, part 1 is proved.

We now want to see that the convergents of an irrational number x really converge to x. This is a
somewhat tedious piece of elementary analysis which starts by taking determinants of the statement
of Lemma 1.9: since each matrix on the has determinant −1, we have

(−1)n = pnqn−1 − pn−1qn

Clearly gcd(pn, qn) = 1, so the convergents are fractions in lowest terms. Moreover,

pn

qn
− pn−1

qn−1
=

(−1)n

qnqn−1

from which we obtain a telescoping/alternating series:

c1 +
n

∑
k=2

(−1)k

qkqk−1
=

p1

q1
+

(
p2

q2
− p1

q1

)
+ · · ·+

(
pn

qn
− pn−1

qn−1

)
=

pn

qn
= [c1; c2, . . . , cn]

Since (qk) is an increasing sequence (for k ≥ 2) it follows that the sequence ( 1
qnqn−1

) decreases to zero.

The sequence of convergents
(

pn
qn

)
is therefore the nth partial sum of a convergent alternating series,

whose limit L satisfies

p1

q1
<

p3

q3
<

p5

q5
< · · · < L < · · · < p6

q6
<

p4

q4
<

p2

q2
and

∣∣∣∣L− pn

qn

∣∣∣∣ < 1
qnqn+1

The sequence of convergents is indeed convergent! It remains to see that its limit is x. For this, first
observe that for all n ∈N

x = c1 +
1

c2 +
1

· · ·+
1

cn + Rn
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In particular, for the first three convergents,

x = c1 + R1 > c1 = [c1] =
p1

q1

x = c1 +
1

c2 + R2
< c1 +

1
c2

= [c1; c2] =
p2

q2

x = c1 +
1

c2 +
1

c3 + R3

> c1 +
1

c2 +
1
c3

= [c1; c2, c3] =
p3

q3

The pattern is obvious; the convergents are alternately smaller (if n is odd) or larger (if n is even) than
x. We therefore see that

p1

q1
<

p3

q3
<

p5

q5
<

p7

q7
< · · · < x < · · · < p8

q8
<

p6

q6
<

p4

q4
<

p2

q2

and we’ve (finally!) proved the first two parts of the following.

Theorem 1.10. Suppose x is irrational and has continued fraction representation [c1; c2, c3, . . .].

1. x is the limit of the sequence of convergents pn
qn

= [c1; c2, . . . , cn],

x = lim
n→∞

pn

qn
= c1 +

∞

∑
n=2

(−1)n

qnqn−1

2. The nth convergent satisfies∣∣∣∣x− pn

qn

∣∣∣∣ < 1
qnqn+1

3. Each convergent is closer to x than the previous:∣∣∣∣x− pn+1

qn+1

∣∣∣∣ < ∣∣∣∣x− pn

qn

∣∣∣∣
Part 3 is left as a tough exercise. With very slight modifications, the Theorem holds even when x is
rational. Part 2 was particularly useful in the days before calculators to guarantee a desired level of
accuracy in an approximation.

Given the Theorem, it is now legitimate for us to write

x = [c1; c2, c3, . . .]

for any real number x, where it is understood that this means the limit of the sequence of convergents
when x is irrational. More theoretically, if you recall the discussion in analysis where the real numbers
may be defined as the set of limits of sequences of rational numbers, this procedure produces a
concrete example of a sequence which converges to a given irrational number.

10



Examples 1.11. 1.
√

13 = [3; 1, 1, 1, 1, 6, . . .] = 3.605555 to 5dp. Its convergents are

n 0 1 2 3 4 5 6 7 8 9 10
cn 3 1 1 1 1 6 1 1 1 1
pn 1 3 4 7 11 18 119 137 256 393 649
qn 0 1 1 2 3 5 33 38 71 109 180
pn
qn

3 4 3.5 3.66667 3.6 3.60606 3.60526 3.60563 3.60550 3.60556

2. π = [3; 7, 15, 1, 292, 1, . . .] whence, to 8dp,

n 0 1 2 3 4 5 6
cn 3 7 15 1 292 1
pn 1 3 22 333 355 103993 104348
qn 0 1 7 106 113 33102 33215
pn
qn

3 3.14285714 3.14150943 3.14159292 3.14159265 3.14159265

According to part 2 of the Theorem,∣∣∣∣π − 22
7

∣∣∣∣ < 1
7 · 106

=
1

742
= 0.0013477 . . .

In fact,
∣∣π − 22

7

∣∣ = 0.0012644 . . ., so the accuracy estimate is very good. Similarly∣∣∣∣π − 333
106

∣∣∣∣ < 1
106 · 113

=
1

11978
= 0.0000834 . . .

Note that larger values in the sequence (cn) make the denominators of the convergents for π increase
faster and produce better approximations than those for

√
13. The golden ratio ϕ = [1; 1, 1, 1, 1, . . .]

thus has the slowest converging sequence of convergents.

Exercises 1. Compute the first six convergents ( pn
qn
) of
√

2,
√

3 and e and find a rational approxi-

mation to e which is accurate to at least 1
200 .

2. Prove that (qn)∞
n=2 is a strictly increasing sequence.

3. Suppose that an irrational number x can be written as two continued fractions:

x = [c1; c2, c3, · · · ] = [d1; d2, d3, . . .]

Prove that ci = di for all i.

Is there any way for a rational number can have two distinct continued fraction representations?
How?

4. (a) Prove part 2 of Lemma 1.9 by induction.
(b) Prove the following. For any n ≥ 2 and any number y 6= − qn−2

qn−1
, we have

[c1; . . . , cn−1, y] =
pn−1y + pn−2

qn−1y + qn−2

This is a slight abuse of notation when y 6∈N, but it should still make sense.
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5. (Very hard!) Prove part 3 of Theorem 1.10, that each convergent is closer to x than the previous:∣∣∣∣x− pn+1

qn+1

∣∣∣∣ < ∣∣∣∣x− pn

qn

∣∣∣∣
Hints: Use qr+2 = cr+2qr+1 + qr ≥ qr+1 + qr to prove that 1

qr+1qr+2
− 1

qr+2qr+3
< 1

qrqr+1
− 1

qr+1qr+2
for all

r. Now prove that

x− pn

qn
= (−1)n+1

(
1

qnqn+1
− 1

qn+1qn+2
+

1
qn+2qn+3

− · · ·
)

and finally put it all together!

1.5 Periodicity of Continued Fractions

You’ve hopefully already guessed that irrational numbers containing a square root eventually have
periodic continued fractions.

Example 1.12. Suppose x = [2; 1, 4, 1, 4, 1, 4, . . .]. The eventually periodic terms can be written

y = [1; 4, 1, 4, . . .] = [1; 4, y] = 1 +
1

4 +
1
y

Some simple algebra turns this into a quadratic equation:

4y2 − 4y− 1 = 0 =⇒ y =
1 +
√

2
2

=⇒ x = 2 +
1
y
= 2 +

2
1 +
√

2
= 2
√

2

There is a general result here:

Theorem 1.13. A continued fraction is ultimately periodic if and only if it is a quadratic irrational-
ity: a number of the form α +

√
β where α, β ∈ Q and β 6= 0.

Sketch Proof. We only prove the =⇒ direction, attributable to Euler. Suppose

x = [d1; d2, d3, . . . , dr, c1, c2, . . . , cn, c1, c2, . . . , cn, . . .] = [d1; d2, d3, . . . , dr, y]

where y = [c1; c2, . . . , cn, y]. By Exercise 4, we see that

y =
pny + pn−1

qny + qn−1
=⇒ qny2 + (qn−1 − pn)y− pn−1 = 0

=⇒ y =
pn − qn−1 +

√
(qn−1 − pn)2 + 4pn−1qn

2qn
(y > 0!)

is a quadratic irrationality. Indeed y lies in the fielda Q(
√

β) where β = (qn−1− pn)2 + 4pn−1qn. Since
x is computed from y using only field operations, it follows that x also lies in Q(

√
β).

aQ(
√

β) = {δ + ε
√

β : δ, ε ∈ Q} is an extension field of the rational numbers; it is closed under addition and multiplica-
tion, and all non-zero elements have multiplicative inverses.

12



The converse, courtesy of Lagrange, is slightly more difficult, but requires a lot more space! A more
general result is also available, but it also requires more work:

Theorem 1.14. Two continued fractions have the same eventually periodic sequence if and only if
∃a, b, c, d ∈ Z with |ad− bc| = 1 and y = ax+b

cx+d .

Exercises 1. (a) Write the continued fraction representation of
√

2 in the form
√

2 = 1 + 1
y and

prove that y2 − 2y− 1 = 0. Why are you not surprised by the solutions to this equation?

(b) Recall that
√

13 = [3; 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, . . .]. Show that
√

13 = 3 + 1
y where y also satis-

fies a quadratic equation. Solve the equation to check that you are correct.

2. Evaluate the eventually periodic continued fractions:

(a) [1; 2, 3, 1, 2, 3, 1, 2, 3, . . .]

(b) [4; 3, 2, 1, 1, 1, 1, . . .]

3. Suppose x = [1; a, 1, a, 1, a, . . .] where a ∈N. Find x and verify directly that it is irrational.

4. (Hard) Prove the⇒ direction of Theorem 1.14

1.6 Diophantine Approximations of Irrational Numbers

The question of finding good rational approximations to irrational numbers is very old. The approx-
imation π ≈ 22

7 has been known for thousands of years: Example 1.11.2 shows that it arises naturally
from the consideration of continued fractions. In this section we make two definitions of what it
means to be a best rational approximation of an irrational number, and we see how these are related
to the convergents of continued fractions.

Definition 1.15. Let p, q ∈N, and let x be a positive irrational number.

1. We say that p
q is a best approximation to x of the first kind if,

∀a, b ∈N such that
a
b
6= p

q
and b ≤ q we have

∣∣∣∣x− p
q

∣∣∣∣ < ∣∣∣x− a
b

∣∣∣
Of all fractions with denominators less than or equal to q, the fraction p

q is closest to x.

2. We say that p
q is a best approximation to x of the second kind if,

∀a, b ∈N such that
a
b
6= p

q
and b ≤ q we have |qx− p| < |bx− a|

The distance of qx to the nearest integer is smaller than that of all other bx when b < q.

The accuracy of a best approximation of the second kind is weighted against the size of its denomi-
nator. It should be clear that a best approximation of either type must be a fraction in lowest terms.

It is fairly easy to ask a computer to generate such approximations, at least for small denominators:

13



in the tables below,

• p
q is a best approximation of the first kind ⇐⇒

∣∣∣π − p
q

∣∣∣ is smaller than all entries above it.

• p
q is a best approximation of the second kind ⇐⇒ the non-integer error in qπ is smaller than
all entries above it.

Examples 1.16. We produce tables indexed by denominators q of the rational number p
q closest to

x and whether these are best approximations: everything is rounded to 5 d.p.

1. For x =
√

2 = 1.41421 . . .

q closest p
q

∣∣∣√2− p
q

∣∣∣ first kind? q
√

2 second kind?

1 1
1 = 1 0.41421 X 1 + 0.41421 X

2 3
2 = 1.5 0.08579 X 3− 0.17157 X

3 4
3 = 1.33333 0.08088 X 4 + 0.24264

4 6
4 = 1.5 n/a

5 7
5 = 1.2 0.01421 X 7 + 0.07107 X

6 8
6 = 1.33333 n/a

7 10
7 = 1.42857 0.01436 10− 0.10051

8 11
8 = 1.375 0.03921 11 + 0.31371

9 13
9 = 1.444 . . . 0.03023 13− 0.27208

The following best approximation is of both kinds:

17
12

=
√

2 + 0.00245, 12
√

2 = 17− 0.02944

2. Consider x = π = 3.14159 . . .

q closest p
q

∣∣∣π − p
q

∣∣∣ first kind? qπ second kind?

1 3
1 0.14159 X 3 + 0.14159 X

2 6
2 = 3 n/a

3 9
3 = 3 n/a

4 13
4 = 3.25 0.10841 X 13− 0.43363

5 16
5 = 3.2 0.05841 X 16− 0.29204

6 19
6 = 3.16667 0.02507 X 19− 0.15044

7 22
7 = 3.14286 0.00126 X 22− 0.00885 X

8 25
8 = 3.125 0.01659 25 + 0.13274

9 28
9 = 3.11111 0.03048 28 + 0.27433

22
7 is such a good approximation that it takes a while to find the next one of either type:

First kind: 179
57 = π − 0.00124 . . .

Second kind: 333
106 = π − 0.0000832 . . . 106π − 333 = 0.00882 · · ·

You shouldn’t be surprised to recall that 333
106 is a convergent of π!

14



Indeed these examples should immediately suggest a couple of patterns. . .

Theorem 1.17. Let x be irrational.

1. Best approximations of the second kind to x are also of the first kind.

2. The convergents of x are precisely the best approximations of the second kind.a

aWith one caveat: if q2 = 1 (equivalently c2 = 1) then p1
q1

= p1 = c1 is not a best approximation of the second kind, since
p2
q2

= p2 = c2 = c1 + 1 will be a closer approximating integer than c1.

Proof. 1. Suppose p
q is a best approximation of the second kind to x. Then |qx− p| < |bx− a| for

all b ≤ q where a
b 6=

p
q . But then∣∣∣∣x− p

q

∣∣∣∣ = 1
q
|qx− p| < 1

q
|bx− a| = b

q

∣∣∣x− a
b

∣∣∣ ≤ ∣∣∣x− a
b

∣∣∣
It follows that p

q is a best approximation of the first kind.

2. Suppose a
b 6=

pn
qn

with 1 ≤ b ≤ qn. By Exercise 2, qn+1 ≥ qn with equality if and only if n = 1
and c2 = 1, exactly the caveat in the theorem. We may therefore assume that qn+1 > qn ≥ b.

Following Lagrange, we consider solutions to a system of linear equations.(
pn pn+1
qn qn+1

)(
y
z

)
=

(
a
b

)
Since the determinant of the matrix is±1, there is a unique integer solution ( y

z ). We check cases:

(a) If = z = 0 we have a contradiction, for b 6= 0.
(b) If y = 0 and z 6= 0, then b = qn+1z =⇒ b ≥ qn+1, a contradiction.
(c) If z = 0 and y 6= 0, then ypn = a and yqn = b forces a

b = pn
qn

, another contradiction.
(d) If y, z 6= 0, then 0 < b = yqn + zqn+1 ≤ qn forces y, z to have opposite signs. Since the

convergents alternate either side of x, we see that qnx − pn and qn+1x − pn+1 also have
opposite signs. Therefore y(qnx− pn) and z(qn+1x− pn+1) have the same sign and so

|bx− a| = |(yqn + zqn+1)x− (ypn + zpn+1)| = |y(qnx− pn) + z(qn+1x− pn+1)|
= |y(qnx− pn)|+ |z(qn+1x− pn+1)| (terms have same sign)
> |y(qnx− pn)| ≥ |qnx− pn|

In the non-contradictory case, the conclusion reads b ≤ qn =⇒ |bx− a| > |qnx− pn|, whence
pn
qn

is a best approximation of the second kind.

A small modification allows us to obtain the converse! Assume a
b is not a convergent of x. Since

(qn) is increasing, we may assume that qn ≤ b < qn+1 for some n. Considering the matrix
equation, we see that all four cases of the analysis hold, as does the conclusion

|bx− a| > |qnx− pn|

Since qn ≤ b it follows that a
b is not a best approximation of the second kind.
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It can moreover be proved that the best approximations of the first kind are the convergents and
some of their intermediate fractions; rational numbers of the form

pn+1m + pn

qn+1m + qn
= [c1; c2, . . . , cn+1, m] (∗)

where m is an integer (roughly) between 1
2 cn+2 and cn+2. We won’t pursue this, except to note that

179
57 = 22·8+3

7·8+1 follows this pattern when considering π.

The primary application however is done. In the days before calculators, if we want a rational ap-
proximation of a number of desired accuracy, one needed only compute whichever convergent was
necessary to achieve this. The same can even be done for rational numbers, provided you’re a bit
more flexible with non-strict inequalities.

Example 1.18. Suppose we want to find a good rational approximation to 317
122 out of all fractions

with denominator at most 10. First compute the continued fraction and its convergents:

317
122

= [2; 1, 1, 2, 24]

n 0 1 2 3 4 5
cn 2 1 1 2 24
pn 1 2 3 5 13 317
qn 0 1 1 2 5 122

Clearly 13
5 is a good starting point: it is a best approximation of both kinds and is very accurate∣∣∣∣317

122
− 13

5

∣∣∣∣ = 1
5 · 122

=
1

610
= 0.00163 . . .

as well as being much easier to work with due to its small denominator. In view of (∗), we should
probably also consider numbers of the form 13m+5

5m+2 but the only one of these with denominator ≤ 10
is 18

7 which isn’t an approximation of the first kind.

Hurwitz’s Theorem

In the next chapter we shall apply continued fractions and convergents to the famous Pell equation
x2− dy2 = 1 where d ∈N is not a perfect square. To facilitate this we shall need the following results.

Theorem 1.19. Suppose x is irrational.

1. There are infinitely many rational numbers a
b satisfying∣∣∣x− a

b

∣∣∣ < 1
b2

2. If a
b is a rational number satisfing∣∣∣x− a

b

∣∣∣ < 1
2b2

then a
b is a best approximation of the second kind to x (and thus a convergent of x). Moreover,

at least one of each pair of successive convergents satisfies this inequality.
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Proof. 1. This is Theorem 1.10, part 2: since qn+1 ≥ qn, every convergent of x satisfies the inequality.

2. Suppose a
b satisfies the inequality but is not a best approximation of the second kind. Since (qn)

is increasing, there is some n such that

qn ≤ b < qn+1

By Theorem 1.17, pn
qn

is closer to x (in the second sense) than a
b : applying the assumed inequality,

|qnx− pn| ≤ |bx− a| < 1
2b

=⇒
∣∣∣∣x− pn

qn

∣∣∣∣ < 1
2bqn

But then

1
bqn
≤ |aqn − bpn|

bqn
=

∣∣∣∣ ab − pn

qn

∣∣∣∣ (|aqn − bpn| is a positive integer since a
b 6=

pn
qn

)

≤
∣∣∣x− a

b

∣∣∣+ ∣∣∣∣x− pn

qn

∣∣∣∣ (4-inequality)

<
1

2b2 +
1

2bqn

But this is iff qn > b, a contradiction. The claim about successive convergents is Exercise 7.

Note the distinction between the two parts of the theorem:∣∣∣x− a
b

∣∣∣ < 1
2b2 =⇒ a

b
is a convergent of x =⇒

∣∣∣x− a
b

∣∣∣ < 1
b2

A biconditional would be nice, but there are plenty of counterexamples: for instance as we’ll see
below, 11

3 is a convergent of
√

13 but∣∣∣∣√13− 11
3

∣∣∣∣ ≈ 0.0611 . . . ≥ 0.0555 . . . =
1

2 · 32

The result can be improved as far as the following, though we won’t prove it.

Theorem 1.20 (Hurwitz). If x is irrational, then there are infinitely many rational numbers a
b which

satisfy∣∣∣x− a
b

∣∣∣ < 1√
5b2

All such are convergents of x, and at least one of every three successive convergents satisfies the
inequality.

By thinking about the convergents of the golden ratio ϕ =
√

5+1
2 , one can see that

√
5 is the largest

number which can be placed in the denominator without ruling out some examples.
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Example 1.21. Here is a table of the first ten convergents of
√

13 with a check on the accuracy of∣∣∣√13− pn
qn

∣∣∣ each time: note that the first convergent p1
q1

= 3 is not a best approximation, so we should
ignore it.

n 1 2 3 4 5 6 7 8 9 10 11 12 13
pn 3 4 7 11 18 119 137 256 393 649 4287 4936 9223
qn 1 1 2 3 5 33 38 71 109 180 1189 1369 2558∣∣∣∣√13− pn

qn

∣∣∣∣ < 1
2q2

n
? X X X X X X X X

In fact all of the convergents checked also satisfy
∣∣∣∣√13− pn

qn

∣∣∣∣ < 1√
5q2

n
.

Exercises 1. Prove the claim that a best approximation of either type must be a fraction in lowest
terms.
(Hint: consider ak

bk where gcd(a, b) = 1)

2. Suppose x is irrational and that a is an integer such that |x− a| < 1
2 : explain (without using

Theorem 1.19) why a is a best approximation of the second kind to x.

3. Suppose that a
b 6=

c
d are both rational, and that

∣∣x− a
b

∣∣ = ∣∣x− c
d

∣∣. Prove that x ∈ Q.

Repeat if |bx− a| = |dx− c|.
4. A Pell equation is an equation x2 − dy2 = 1 for integers x, y, where d is a positive integer that is

not a perfect square. Explain why the equation is uninteresting if d is a perfect square.
(If d = a2, what are the integer solutions?)

5. Prove that the following statements hold for every pair of positive integers (x, y):

(i)
∣∣x2 − 2y2

∣∣ ≥ 1

(ii) If
∣∣∣x− y

√
2
∣∣∣ < 1

y , then x + y
√

2 < 2y
√

2 + 1
y .

Now use (i) and (ii) to show that∣∣∣x− y
√

2
∣∣∣ > 1

2y
√

2 + 1
y

6. Suppose x = [c1; c2, . . .] is irrational, where cn ≥ 2 for all n ≥ 2. Prove that

a
b

is a convergent ⇐⇒
∣∣∣x− a

b

∣∣∣ < 1
2b2

7. Prove the simplified version of Hurwitz’s Theorem: at least one of every two successive con-
vergents of x satisfies the inequality

∣∣∣x− pn
qn

∣∣∣ < 1
2q2

n
.

Hint: Recall that pn
qn

and pn+1
qn+1

lie on either side of x, so∣∣∣∣ pn+1

qn+1
− pn

qn

∣∣∣∣ = ∣∣∣∣x− pn

qn

∣∣∣∣+ ∣∣∣∣x− pn+1

qn+1

∣∣∣∣
18



8. Let ϕ = 1
2 (1 +

√
5) be the Golden Ratio.

(a) Compute the first few convergents pn
qn

of the continued fraction for ϕ. You should recognize
the Fibonacci numbers: prove that this is really the correct pattern.

(b) With reference to the intermediate fractions formula on page 16, argue that best approxi-
mations of the first and second kind are identical for ϕ.

(c) Use Binet’s formula

Fn =
ϕn − (−ϕ)−n

√
5

for the nth Fibonacci number to prove that∣∣∣∣ϕ− Fn+1

Fn

∣∣∣∣ = 1√
5F2

n

(
1− (−1)n

ϕ2n

)
from which exactly half the convergents satisfy Hurwitz’s Theorem.

(d) (Hard: for analysis aficionados only!) Prove that we cannot replace
√

5 with any larger
number in Hurwitz’s Theorem if we want it to apply to all irrationals. That is, if we want
all irrationals x to have infinitely many rationals a

b satisfying∣∣∣x− a
b

∣∣∣ < 1
kb2

then we must have k ≤
√

5. In this sense Hurwitz’s Theorem is an optimal result.
(Hint: think about the definition of limit. . . )

The above helps to explain why ϕ is one of the hardest numbers to approximate efficiently with rational
numbers. If you think carefully about the Euclidean Algorithm you should see a relationship; for numbers
of at most a given size, the Euclidean Algorithm will take the largest number of steps to compute the gcd
of consecutive Fibonacci numbers.
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