
2 Pell’s Equation

2.1 Square-triangular numbers and Convergents of Continued Fractions

Square-triangular numbers are integers which are simultaneously:

• Perfect squares: of the form n2 for some n ∈N;

• Triangular: of the form
m
∑

k=1
k = 1

2 m(m + 1) for some m ∈N.

For example, 36 is a square-triangular number:

To find all such, we need to solve the Diophantine equation 2n2 = m(m + 1). It can be seen that this
is equivalent to solving the Diophantine equation

x2 − 2y2 = 1 where

{
x = 2m + 1
y = 2n

Here are the first few square-triangular numbers n2, and the corresponding m, n, x, y:

n2 m n x y
1 1 1 3 2
36 8 6 17 12

1225 49 35 99 70
41616 288 204 577 408

You should notice something: the solutions (x, y) correspond to some of the convergents pn
qn

of the

continued fraction representation of
√

2. Here is a table of the first ten convergents and the corre-
sponding values of p2

n − 2q2
n:

n 1 2 3 4 5 6 7 8 9 10

pn

qn

1
1

3
2

7
5

17
12

41
29

99
70

239
169

577
408

1393
985

3363
2378

p2
n − 2q2

n −1 1 −1 1 −1 1 −1 1 −1 1

It appears that exactly half the convergents of
√

2 yield to a solution of x2 − 2y2 = 1 and thus to a
square-triangular number. This equation is the first in an important family:

1



Definition 2.1. A Pell equation is a Diophantine equation of the form x2 − dy2 = 1 where d is an
integer which is not a perfect square. Among all solutions, the fundamental solution is the pair (a, b)
where both are positive and a, b are minimal.

Recall we want only integer solutions (x, y). To keep the following treatment clean, we will only
consider solutions where both x and y are positive. Clearly (±x,±y) will also be solutions.

The above discussion suggests that solutions to Pell’s equation should be some, but not all, of the
convergents of

√
d. This is indeed the case. We shall show more: that Pell’s equation has infinitely

many solutions for any d and that these may be computed using a relatively simple procedure. It
follows that there are infinitely many square-triangular numbers! For the present, we shall ignore
the existence question and focus on how to find solutions. The first part of this is straightforward
and follows from our discussion of Diophantine approximations.

Theorem 2.2. If (x, y) is a solution to Pell’s equation x2 − dy2 = 1, then x
y is a convergent of

√
d.

Proof. From our discussion of Hurwitz’s Theorem, it is enough to show that any solution satisfies∣∣∣ x
y −
√

d
∣∣∣ < 1

2y2 . This is straightforward by factorization: if x2 − dy2 = 1, then

x2

y2 = d +
1
y2 > d =⇒ x

y
>
√

d > 1

from which∣∣∣∣ xy −√d
∣∣∣∣ = 1

y

∣∣∣x−√dy
∣∣∣ = ∣∣x2 − dy2

∣∣
y
∣∣∣x +

√
dy
∣∣∣ = 1

y2
∣∣∣ x

y +
√

d
∣∣∣ < 1

2y2
√

d
<

1
2y2

The Theorem says that we can find all solutions to Pell’s equation by hunting through the list of
convergents. This may take a while. . .

Examples 2.3. We’ve already seen that half of the convergents of
√

2 appear to yield solutions to
x2 − 2y2 = 1. Here’s what happens for the first few convergents of

√
7 and

√
13.

n 1 2 3 4 5 6 7 8 9 10

pn

qn

2
1

3
1

5
2

8
3

37
14

45
17

82
31

127
48

590
223

717
271

p2
n − 7q2

n −3 2 −3 1 −3 2 −3 1 −3 2

pn

qn

3
1

4
1

7
2

11
3

18
5

119
33

137
38

256
71

393
109

649
180

p2
n − 13q2

n −4 3 −3 4 −1 4 −3 3 −4 1

We had to go to the 10th convergent before finding a solution to x2 − 13y2 = 1!

You should spot another pattern here: the values of p2
n− dq2

n are eventually periodic. This is a theorem,
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though we won’t prove it: it relates to the eventual periodicity of the continued fraction of a quadratic
irrational.

Exercises 1. A square lattice has 1189 dots on each side. If these dots are arranged into an equilat-
eral triangular lattice, how many does are on each side of the triangle?

2. Check rigorously that the integer solutions to the Pell and square-triangular equations x2 −
2y2 = 1 and 2n2 = m(m + 1) correspond via x = 2m + 1 and y = 2n.

3. (a) Create a table listing the fundamental solutions (x, y) to Pell’s equation x2 − dy2 = 1 for
each non-square d ≤ 15.
(No working is necessary)

(b) Write a computer program or learn how to use a computer algebra package to find a solu-
tion to the Pell equation x2 − 109y2 = 1.

2.2 New solutions from old

Thankfully there is an easier way to generate solutions to Pell’s equation than calculating all the
convergents and checking each. It still depends on knowing a solution, but once you have it the
others are easy to find. Here is the process for the basic equation with d = 2.

• Start with the fundamental solution (x, y) = (3, 2).

• Suppose that (x, y) also solves the equation. Consider

(3 + 2
√

2)(x + y
√

2) = (3x + 4y) + (2x + 3y)
√

2

and observe that the coefficients give a new solution (3x + 4y, 2x + 3y):

(3x + 4y)2 − 2(2x + 3y)2 = 9x2 + 24xy + 16y2 − 8x2 − 24xy− 18y2

= x2 − 2y2 = 1

• By induction, if x + y
√

2 = (3 + 2
√

2)n, then x2 − 2y2 = 1. Start computing:

(3 + 2
√

2)2 = 17 + 12
√

2

(3 + 2
√

2)3 = 99 + 70
√

2

(3 + 2
√

2)4 = 577 + 408
√

2

(3 + 2
√

2)5 = 3363 + 2378
√

2
...

We seem to be obtaining all the solutions as powers of the fundamental solution 3 + 2
√

2. In-
deed this is the case:

Theorem 2.4. (x, y) is a positive solution to Pell’s equation x2 − 2y2 = 1 if and only

x + y
√

2 = (3 + 2
√

2)n for some n ∈N
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Proof. As seen above, if (x, y) is a solution, then (3x + 4y, 2x + 3y) is another. We can think of this as
a matrix equation: if (xn, yn) is a solution, then (xn+1, yn+1) is also a solution, where(

xn+1
yn+1

)
=

(
3 4
2 3

)(
xn
yn

)
The crucial observation is that the matrix has determinant 1, so we can reverse the process in integers:(

xn
yn

)
=

(
3 −4
−2 3

)(
xn+1
yn+1

)
=

(
3xn+1 − 4yn+1
−2xn+1 + 3yn+1

)
We wish to establish the following; if (xn+1, yn+1) is a positive solution with xn+1 > 3, then

(a) x2
n − 2y2

n = 1;

(b) xn and yn are positive;

(c) xn < xn+1.

The first is trivial: just calculate. For (b), first observe that

x2
n+1 > 2y2

n+1 =⇒ xn+1 >
√

2yn+1 =⇒ xn = 3xn+1 − 4yn+1 > (3
√

2− 4)yn+1 > 0

Now observe that

yn > 0 ⇐⇒ 2
3

xn+1 < yn+1 ⇐⇒
8
9

x2
n+1 < 2y2

n+1 = x2
n+1 − 1 ⇐⇒ xn+1 > 3

For (c), the positivity of yn guarantees

xn+1 = 3xn + 4yn > 3xn > xn

From (xn+1, yn+1) we can therefore produce a sequence of positive solutions where

xn+1 > xn > xn−1 > xn−2 > · · ·

provided each xk is always larger than 3. An infinite decreasing sequence of positive integers is an
absurdity: eventually some solution must satisfy 1 ≤ x1 ≤ 3. Since the only solution with x = 1, 2 or
3 is the fundamental solution (3, 2), the proof is complete.

This type of proof is known as a descent argument, since one is repeatedly creating something smaller:
these operate somewhat like a reverse induction and were popularized by Fermat. Nothing prevents
us from continuing to descend from (x, y) = (3, 2), except that the solutions will no longer be posi-
tive: indeed one obtains the sequence

(1, 0), (3,−2), (17,−12), (99,−70), (577,−408), . . .

exactly the conjugates of the positive solutions.

The crucial thing that drives the argument is the presence of a matrix
(

3 4
2 3

)
with integer entries and

determinant 1. Such matrices keep appearing in our discussions, and will continue to do so!
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We can rephrase the result using matrix notation: first observe that the eigenvalues and eigenvec-
tors1 of

(
3 4
2 3

)
are 3± 2

√
2 and

(
±
√

2
1

)
. We can now diagonalize and easily exponentiate to obtain a

simplified method of calculation:(
xn
yn

)
=

(
3 4
2 3

)n (1
0

)
=

(√
2 −

√
2

1 1

)(
(3 + 2

√
2)n 0

0 (3− 2
√

2)n

)(√
2 −

√
2

1 1

)−1 (
1
0

)

=

 1
2

(
(3 + 2

√
2)n + (3− 2

√
2)n
)

1
2
√

2
((3 + 2

√
2)n − (3− 2

√
2)n)


Since 3− 2

√
2 ≈ 0.1715 is tiny, we can use the ceiling and floor functions to see that,

xn =

⌈
1
2
(3 + 2

√
2)n
⌉

yn =

⌊
1

2
√

2
(3 + 2

√
2)n
⌋
=

⌊
xn√

2

⌋
This can easily be entered into your calculator. For example x7 = 114243, y7 = 80782.

We have now proved that there are infinitely many solutions to the equation x2 − 2y2 = 1, and thus
infinitely many square-triangular numbers. They get big rather quickly, indeed exponentially!

Can we apply the same trick with x2 − 3y2 = 1? It is easy to see that (x, y) = (2, 1) is the smallest
solution. We’d therefore like to claim that the nth positive solution (xn, yn) satisfies

xn +
√

3yn = (2 +
√

3)n

Can we make this work in general? Indeed we can!

Theorem 2.5. Suppose d ∈ N is not a perfect square. A pair (x, y) of positive integers solves the
Pell equation x2 − dy2 = 1 if and only if ∃n ∈N such that

x + y
√

d =
(

a + b
√

d
)n

where (a, b) is the fundamental solution. Moreover, such solutions may be computed using floors
and ceilings:

x =

⌈
1
2
(a + b

√
d)n
⌉

y =

⌊
1

2
√

d
(a + b

√
d)n
⌋
=

⌊
x√
d

⌋
(†)

We’ll be able to give a very easy proof later in the term once we’ve developed some ring-theory. For
now we give a sketch showing how to generalize the approach used for d = 2. Note particularly that
the matrix in step 2 again has determinant 1. . .

1( 3 4
2 3
) (√

2
1

)
= (3 + 2

√
2)
(√

2
1

)
and

( 3 4
2 3
) (−√2

1

)
= (3− 2

√
2)
(
−
√

2
1

)
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Proof (Sketch). 1. If (x, y) solves x2− dy2 = 1, then so does (ax + dby, ay+ bx). This follows from

(a +
√

db)(x +
√

dy) = (ax + dby) +
√

d(ay + bx)

2. We therefore have a sequence (xn, yn) of solutions satisfying:(
xn
yn

)
=

(
a bd
b a

)n (1
0

)
(∗)

3. To see that all solutions have this form, suppose that (xn+1, yn+1) is a solution with xn+1 > a,
and reverse the process to define (xn, yn) via(

xn
yn

)
=

(
a bd
b a

)−1 (xn+1
yn+1

)
=

(
axn+1 − bdyn+1
ayn+1 − bxn+1

)
Now check the following:

(a) x2
n − dy2

n = 1;
(b) xn, yn ∈N;
(c) xn < xn+1.

4. By a descent argument, we must eventually produce the fundamental solution (a, b).

5. Diagonalizing the matrix in (∗) results in (†).

Exercises 1. (a) If (x0, y0) is an integer solution to x2 − dy2 = −1, show that (x2
0 + dy2

0, 2x0y0)
solves Pell’s equation x2 − dy2 = 1.

(b) Find a solution to x2 − 41y2 = −1 by plugging in y = 1, 2, 3, . . . until you find a value for
which 41y2 − 1 is a perfect square. Use this to find a solution to x2 − 41y2 = 1.

2. If (x0, y0) is a solution to x2 − dy2 = m, and if (x1, y1) is a solution to x2 − dy2 = 1, show that
(x0x1 + dy0y1, x0y1 + y0x1) is also a solution to x2 − dy2 = m. Use this to find three solutions in
positive integers to the equation x2 − 2y2 = 7.
(Hint: Guess your first solution (x1, y1)!)

3. Consider the negative Pell equation x2 − dy2 = −1.
(a) Prove that if this has a solution in integers, then d is not divisible by 4 or any prime con-

gruent to 3 modulo 4.
(Hint: recall quadratic residues from a previous class)

(b) For each non-square integer d ≤ 15, determine whether the negative Pell equation x2 −
dy2 = −1 has a solution. What are the next three (non-square) integers d are for which
x2 − dy2 = −1 has a solution? Find a solution in each case.

4. For each of the following equations, either find a solution (x, y) in positive integers, or explain
why no solution can exist.

(a) x2 − 11y2 = 7 (b) x2 − 11y2 = 433 (c) x2 − 11y2 = 3

5. Provide arguements for parts (a), (b) and (c) in the proof of Theorem 2.5. Also explain why the
floor and ceiling formulæ are correct.
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2.3 Existence of a Solution to Pell’s Equation

We know (Theorem 2.2) that every solution (x, y) to x2 − dy2 = 1 yields a convergent x
y of
√

d. We
now see the converse:

Theorem 2.6. Pell’s equation x2 − dy2 = 1 has infinitely many solutions. More precisely, at least
one convergent of

√
d yields the fundamental solution, which generates all solutions by Theorem 2.5.

Here is the strategy for the proof.

1. First hunt for two pairs (x, y), (X, Y) for which x2 − dy2 = X2 − dY2 = m gives the same value.

2. Divide one by the other:

x +
√

dy
X +
√

dY
=

xX− dyY +
√

d(yX− xY)
X2 − dY2 =

xX− dyY +
√

d(yX− xY)
m

whence(
xX− dyY

m

)2

− d
(

yX− xY
m

)2

=
(x2 − dy2)(X2 − dY2)

m2 = 1

3. We therefore have an integer solution to Pell’s equation if and only if

xX− dyY
m

,
yX− xY

m
∈ Z ⇐⇒

{
xX ≡ dyY (mod |m|)
yX ≡ xY (mod |m|)

Certainly if x ≡ X and y ≡ Y (mod |m|) then we’re done.

Example 2.7. As a sanity check, recall that 452− 7 · 172 = 2 = 32− 7 · 12 and that 45 ≡ 5 and 17 ≡ 1
(mod 2). We check

45 + 17
√

7
3 +
√

7
=

45 · 3− 7 · 17 + (17 · 3− 45)
√

7
32 − 7

=
16 + 6

√
7

2
= 8 + 3

√
7

Indeed (8, 3) is a solution: 82 − 7 · 32 = 1.

The hole in the strategy is step 1! We need to show the existence of pairs (x, y) and (X, Y) such that

x2 − dy2 = X2 − dY2

and for which x ≡ X and y ≡ Y modulo m := x2 − dy2. For this we’ll invoke the box/pigeonhole
principle by placing the infinite set of convergents into finitely many boxes: we first need to create
the boxes. . .

Lemma 2.8. If x
y is a convergent of

√
d, then

0 < x + y
√

d < 3y
√

d and so
∣∣x2 − dy2∣∣ < 3

√
d

The proof is a simple exercise. We’re now in a position to complete the main result.
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Proof of Theorem. If x
y is a convergent of

√
d, the Lemma tells us that x2 − dy2 is one of the finitely

many integers in the interval (−3
√

d, 3
√

d). Since there are infinitely many convergents, the box
principle says that at least one such integer is attained infinitely many times: call this m.
We now have infinitely many pairs of solutions (xi, yi) to an equation x2− dy2 = m. Modulo m, there
are only m2 distinct pairs of integers. A second application of the box principle says that there must
be at least two pairs (indeed infinitely many!) which are mutually congruent.
By the above algebraic steps, we can find at least one solution to Pell’s equation in positive integers.
By well-ordering, there is a minimal such: this is the fundamental solution.

The fundamental solution to Pell’s equation can be pinned down more accurately. Recall that the
sequence of quotients in the continued fraction for

√
d is eventually periodic

√
d = [c1; . . . , ck, e1, . . . , el , e1, . . . , el , . . .]

It can be shown that the convergent pn
qn

with n = k + l − 1 provides the fundamental solution to

either x2 − dy2 = ±1. If the result is −1, then computing (pn + qn
√

d)2 in the usual way2 solves
x2 − dy2 = 1. The fundamental solution can therefore be very large when

√
d has a long period.

Example 2.9.
√

73 = [8; 1, 1, 5, 5, 1, 1, 16, 1, 1, 5, 5, 1, 1, 16, . . .] has k + l − 1 = 1 + 7 − 1 = 7. The
seventh convergent is 1068

125 , but this produces

10682 − 73 · 1252 = −1

The fundamental solution to x2 − 73y2 = 1 comes from

x +
√

73y = (1068 + 125
√

73)2 = 2281249 + 267000
√

73

which corresponds to the 1 + 14− 1 = 14th convergent. Phew!

Exercises 1. Look at the table of convergents of
√

7 in Examples 2.3.

(a) For each of the pairs (pn, qn) in the table which produce p2
n − 7q2

n = −3, find their remain-
ders modulo 3.

(b) Find the first two pairs in the table which are mutually congruent modulo 3. Labelling
these (x, y) and (X, Y), compute

x +
√

7y
X +
√

7Y

where the numerator is the larger of the two. Which solution to Pell’s equation do you
obtain?

(c) Now try to be a bit sneakier: by allowing one or more of x, y, X, Y to be negative, see if you
can produce the fundamental solution to Pell.

2. Prove Lemma 2.8.
(Hint: recall that every convergent x

y satisfies
∣∣∣ x

y −
√

d
∣∣∣ < 1

y2 )

2This is the n = k + 2l − 1th convergent.
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