
4 Linear Recurrence Relations & the Fibonacci Sequence

Recall the classic example of the Fibonacci sequence (Fn)∞
n=1 = (1, 1, 2, 3, 5, 8, 13, 21, . . .), defined by{

Fn+2 = Fn+1 + Fn

F1 = F2 = 1

This sequence has well-known relations to population growth (famously breeding rabbits), spirals in
the center of sunflowers, etc. From a number theory perspective, we have two main questions:

1. How do we find a formula for the nth Fibonacci number? More generally, how do we solve
linear recurrence relations?

2. Does the Fibonacci sequence satisfy any interesting patterns when we consider its remainders
modulo an integer?

4.1 Linear Recurrence Relations

The general theory of linear recurrences is analogous to that of linear differential equations.

Definition 4.1. A sequence (xn)∞
n=1 satisfies a linear recurrence relation of order r ∈ N if there exist

a0, . . . , ar, f with a0, ar 6≡ 0 such that

∀n ∈N, arxn+r + ar−1xn+r−1 + · · ·+ a0xn = f

The definition is malleable: in particular

• The sequence could start with x0, or anywhere else;

• The coefficients ak are generally functions, though for us they will usually be constant;

• If f ≡ 0, the recurrence is homogeneous; this is usually be the case for us.

Example 4.2. Consider the linear recurrence xn+1 = 2xn − 1 with initial condition x1 = 2. A simple
approach might be to list the values of xn and try to spot a pattern:

(xn) = (2, 3, 5, 9, 17, 33, 65, 129, . . .)

Since the ratio xn+1
xn

appears to be approaching 2, we might guess that xn = α · 2n + β for some
constants α, β. Substituting this into the original recurrence, we see that

α · 2n+1 + β = α · 2n+1 + 2β− 1 ⇐⇒ β = 2β− 1 ⇐⇒ β = 1

But then x1 = 2α + 1 = 2 ⇐⇒ α = 1
2 . The solution is therefore

xn =
1
2
· 2n + 1 = 2n−1 + 1

If this ad hoc approach makes you uncomfortable, prove by induction that this really is the solution.
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We will give some of the discussion in the language of second-degree equations. The proofs are
simple exercises, and it should be obvious how the theory extends to recurrences of other orders.

Theorem 4.3. Consider the second-order recurrence axn+2 + bxn+1 + cxn = f .

1. Given initial conditions x1, x2, there exists a unique solution xn.

2. If x(p)
n is a fixed solution to the recurrence, then all solutions have the form xn = x(c)n + x(p)

n

where x(c)n satisfies the associated homogeneous equationa

axn+2 + bxn+1 + cxn = 0 (∗)

3. The solutions to (∗) form a two-dimensional vector space: given linearly independent solutions
yn and zn, there exist unique constants α, β such that

xn = αyn + βzn

4. If a, b, c are constant, the characteristic equation of (∗) is the quadratic aλ2 + bλ + c = 0. There
are two cases, dependent on the roots λ1, λ2:

(a) If λ1 6= λ2, then the general solution is xn = αλn
1 + βλn

2

(b) If λ1 = λ2, then the general solution is xn = (α + βn)λn
1

ax(p) and x(c) should recall the particular solution and complementary function from differential equations.

Example (4.2, mk. II). In the context of the Theorem:

• x(c)n = α · 2n is the general solution to the homogeneous relation xn+1 − 2xn = 0 with character-
istic equation λ− 2 = 0.

• x(p)
n = 1 is a single solution to the full recurrence xn+1 = 2xn − 1.

• The general solution is xn = α · 2n + 1; applying the initial condition x1 = 2 yields α = 1.

For us, the important case is the Fibonacci sequence: the characteristic equation is

λ2 − λ− 1 = 0 =⇒ λ =
1±
√

5
2

= φ, φ̂

where φ = 1+
√

5
2 is the golden ratio and φ̂ = 1−

√
5

2 = − 1
φ . Choosing the constants such that F1 = F2 =

1, we conclude,

Theorem 4.4 (Binet’s Formula). Fhe Fibonacci sequence has nth term

Fn =
φn − φ̂n
√

5
=

φn − (−φ)−n
√

5
=

1√
5

[(
1 +
√

5
2

)n

−
(

1−
√

5
2

)n]
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Exercises 1. Solve the homogeneous recurrence relation{
xn+2 − 4xn+1 + 4xn = 0
x1 = 1, x2 = −4

2. Find a particular solution of the form x(p)
n = dn + e to the relation{

xn+2 − 4xn+1 + 4xn = n
x1 = 1, x2 = −4

Using your answer to the previous question, find the general solution to the full recurrence.

(This is precisely the method of undetermined coefficients as seen in differential equations)

3. Find the general solution to the recurrence relation{
xn+2 − 2xn+1 + 2xn = 0
x1 = 1, x2 = 0

(The characteristic equation has complex roots: this is no matter! If you want a challenge, write your
answer using binomial coefficients. . . )

4. Prove all parts of Theorem 4.3.
(Hint: for part 3, consider wn := xn − αyn − βzn where

( α
β

)
=
( y1 z1

y2 z2

)−1
( x1

x2 ))

4.2 The Fibonacci Sequence in Zm

If a solution to a recurrence relation is in integers, one can ask if there are any patterns with respect
to a given modulus. It should be clear that any recurrence of the form

xn+2 = axn+1 + bxn

where a, b ∈ Z and with initial conditions x1, x2 ∈ Z necessarily produces a sequence of integers.
The Fibonacci sequence (a = b = x1 = x2 = 1) is one of the simplest such, so we begin by hunting
for patterns.

Fn mod 2 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, . . . Period 3
Fn mod 3 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, . . . Period 8
Fn mod 4 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, . . . Period 6
Fn mod 5 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, . . . Period 20
Fn mod 6 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 0, 1, 1, . . . Period 24
Fn mod 7 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, . . . Period 16
Fn mod 8 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, . . . Period 12
Fn mod 9 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 0, 1, 1, . . . Period 24

As soon as we see a pair of 1’s we know that the sequence repeats. Does this always happen? Are
there any patterns in the periods? Can you guess what the period is modulo 10?
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Theorem 4.5. The Fibonacci sequence in Zm is periodic.

Proof. This is a simple box-principle argument. Let {(Fn, Fn+1) : n ∈N} be the set of pairs of consec-
utive Fibonacci numbers modulo m. This is a subset of Zm ×Zm (cardinality m2). Since the sequence
is infinite, the box-principle tells us that at least one pair occurs infinitely many times:

∃n, N ∈N such that Fn ≡ Fn+N and Fn+1 ≡ Fn+1+N (mod m) (†)

Since the defining recurrence relation is second-order, the pairs (Fn, Fn+1) and (Fn+N , Fn+1+N) gener-
ate the same sequence modulo m. It follows that (Fn) is eventually periodic.

To see that the entire sequence is periodic, observe that we can write

Fn−1 = Fn+1 − Fn

This defines the sequence in reverse, starting from any pair. In particular, the reverse sequences
starting from the pairs (Fn, Fn+1) and (Fn+N , Fn+1+N) in (†) are identical, whence the periodicity
continues back to the initial pair (F1, F2).

Definition 4.6. Denote by N(m) the period of the Fibonacci sequence modulo m; that is, the value
of the smallest N such that FN+1 ≡ FN+2 ≡ 1 (mod m).

By looking for patterns in the above table, you might hypothesize some elementary properties.

Theorem 4.7. 1. Fk+S ≡ Fk (mod m), ∀k ∈N ⇐⇒ N(m) | S.

2. For any m, n we have N(m) | N(mn).

3. If gcd(m, n) = 1 then N(mn) = lcm
(

N(m), N(n)
)
.

Proof. 1. The (⇐) direction is trivial. The (⇒) is just the division algorithm: there exist unique
q, r ∈ Z such that

S = qN(m) + r, 0 ≤ r < N(m)

from which the minimality of N(m) forces r = 0.

2. For any k, m, n, we have

Fk+N(mn) ≡ Fk (mod mn) =⇒ Fk+N(mn) ≡ Fk (mod m)

By part 1, we conclude that N(m) | N(mn).

3. When gcd(m, n) = 1, observe

Fk+N ≡ Fk (mod mn) ⇐⇒
{

Fk+N ≡ Fk (mod m) and,
Fk+N ≡ Fk (mod n)

Suppose this holds for all k. By definition N = N(mn) is the least positive integer satisfying the
LHS. By part 2, lcm(N(m), N(n)) is the least positive integer satisfying the RHS.
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Remarkably, even for such a simple sequence, the period N(m) is not fully understood.

Conjecture 4.8. N(pn) = pn−1N(p) when p is prime: no counter-example has been found among
all primes p < 2.8× 1016.

Using this, one could, for example, compute

N(2304) = N(28 · 32) = lcm(27N(2), 3N(3)) = lcm(128 · 3, 3 · 8) = 384

Binet’s formula modulo p

For roughly half the primes, we can obtain a modular version of Binet’s formula.

Theorem 4.9. If p is a prime congruent to either 1 or 4 modulo 5 (equivalently p ≡ ±1 mod 10),
then ∃c ∈ Z×p such that

∀n ∈N, Fn ≡ c−1
[(

1 + c
2

)n

−
(

1− c
2

)n]
(mod p)

Proof. The idea is to look for a value c that plays the role of
√

5: otherwise said, we want c2 ≡ 5
modulo p. Computing Legendre symbols and recalling quadratic reciprocity, we see that(

5
p

)
= (−1)

5−1
2 ·

p−1
2

( p
5

)
=
( p

5

)
= 1

The congruence c2 ≡ 5 therefore has a solution, which we may assume is odd, for otherwise we could
choose the other solution p− c. Now define the sequence

Jn ≡ c−1
[(

1 + c
2

)n

−
(

1− c
2

)n]
(mod p)

It is easily checked that Jn ≡ Jn−1 + Jn−2 and J1 ≡ J2 ≡ 1, whence Jn ≡ Fn modulo p.

It is easy to see that 1±c
2 are both non-zero modulo p, so we always get both terms in Binet’s formula.

Example 4.10. If p = 11, then c2 ≡ 5 ⇐⇒ c2 ≡ 16 ⇐⇒ c ≡ ±4. We choose c = 7, which yields
c−1 ≡ 8. Therefore

Fn ≡ 8(4n − 8n) ≡ 3(8n − 4n) (mod 11)

Binet’s formula gives us more: by Fermat’s Little Theorem,

Fn+10 ≡ 3(8n+10 − 4n+10) ≡ 3(8n − 4n) ≡ Fn (mod 11)

whence the period N(11) divides 10. This is true in general. . .

Theorem 4.11. Let p be a prime congruent to either 1 or 4 modulo 5. Then N(p) | p− 1.
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Proof. Write α := 1+c
2 and β := 1−c

2 to obtain

Fn+(p−1)k ≡ c−1
[
αnα(p−1)k − βnβ(p−1)k

]
≡ c−1 [αn − βn] ≡ Fn (mod p)

since α, β 6≡ 0. By Theorem 4.7, we conclude N(p) | p− 1.

It is harder to prove, but the following can also be shown:

• If p ≡ 2, 3 modulo 5, then N(p) | 2p + 2. We shouldn’t expect a discrete version of Binet’s
formula since there are no values c which satisfy c2 ≡ 5.

• N(m)

{
= 6m if m = 2 · 5k for some k ≥ 1
≤ 4m otherwise

Other Recurrence Relations: Lucas Sequences

It is reasonable to ask if the solution to any linear constant coefficient recurrence relation is periodic
modulo m. Suppose that the recurrence has order r and that

xn+r + ar−1xn+r−1 + · · ·+ a1xn+1 + a0xn = 0

has integer coefficients ak. By considering the r-tuples

(xN , xN+1, . . . , xN+r−1)

modulo m and applying the box-principle argument of Theorem 4.5, we see that any solution is
therefore eventually periodic modulo m: with a trivial modification, the gcd result (Theorem 4.7) also
holds. We don’t necessarily get full periodicity however, for example{

xn+1 = 2xn

x1 = 1
=⇒ (xn) ≡ (1, 2, 0, 0, 0, 0, 0, 0, 0, . . .) (mod 4)

To obtain full periodicity, it is enough that a0 be a unit modulo m.

Several generalizations of the Fibonacci sequence are important in number theory. In particular:

Definition 4.12. A Lucas sequence (xn) is a solution to the recurrence xn+2 = Pxn+1 −Qxn, where P
and Q are given integers. It is typical to start these sequences from x0 and to consider two indepen-
dent solutions

• U(P, Q) satisfies (x0, x1) = (0, 1)

• V(P, Q) satisfies (x0, x1) = (2, P)

The Fibonacci sequence is therefore U(1,−1). In line with the above discussion, these sequences are
eventually periodic modulo m and the gcd theorem for periods also holds. Most examples seem to
satisfy N(pk) = pk−1N(p), although counter-examples are known (Exercise 4.2.6).
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Example 4.13. The Lucas sequences U(2,−1) and V(2,−1) are known, respectively, as the Pell
numbers and Pell-Lucas numbers. If we write the first few,

Un+1 = 2Un + Un−1, U0 = 0, U1 = 1

Vn+1 = 2Vn + Vn−1, V0 = 2, V1 = 2

n 0 1 2 3 4 5 6 7
Un(2,−1) 0 1 2 5 12 29 70 169
Vn(2,−1) 2 2 6 14 34 82 198 478

you should start to see the pattern: the ratio
1
2 Vn
Un

= pn
qn

is the sequence of convergents of the continued

fraction
√

2 = [1, 2, 2, 2, 2, 2, . . .].

Exercises 1. Consider the recurrence xn+1 = 2xn.
(a) Solve this modulo 4, given any initial condition x1 ≡ a: what do you observe?
(b) Solve the congruence modulo 5 with the initial condition x1 = 1: what happens this time?

2. Solve the following linear recurrence relations using the characteristic equation method.

(a) an = 3an−1 + 10an−2, a1 = 1, a2 = 3
(b) bn = 2bn−1 − 5bn−2, b1 = 1, b2 = −3
(c) cn = 4cn−1 − cn−2 − 6cn−3, c1 = 0, c2 = 0, c3 = 1

3. For each of the recurrences in the previous question, find the (eventual) periods modulo 2,
modulo 3 and modulo 6. Check that N(2 · 3) = lcm(N(2), N(3)) in each case.

4. Find a Binet-type formula for the Fibonacci sequence modulo 19.

5. Let (Fn) be the Fibonacci sequence.

(a) Prove that for all n ≥ k + 2 we have Fn = Fk+1Fn−k + FkFn−k−1

(b) Prove that Fk | F2k for all k.
(c) More generally, prove that k | n =⇒ Fk | Fn.
(d) Make a hypothesis and prove it: If Fn is prime, then n is. . .

6. Write a program or use a computer algebra package to find the period of the Lucas sequence
with (P, Q) = (2,−1) modulo 13 and modulo 169 = 132. Hence show that N(pk) need not
equal pk−1N(p).

7. (a) Suppose that λ and µ are distinct roots of the characteristic equation for the Lucas se-
quences (Un) and (Vn). Prove that

Un =
λn − µn

λ− µ
and Vn = λn + µn

(b) What are the solutions if the roots are repeated; that is, if P2 = 4Q?

8. (a) Solve the recurrence relations for the Pell numbers and the Pell-Lucas numbers Un, Vn.
(b) Use part (a) to find an explicit expression for the nth convergent of

√
2 and an alternative

proof that the convergents really do converge to
√

2.
(c) For which primes p will it be possible to find an explicit Binet-type formula for Un and Vn

modulo p? Find an explicit formula modulo p = 7.
(Hint: think about quadratic residues)

(d) Compute the periods of Un and Vn modulo 2, 3, 5, and 7. What do you expect the period
modulo 210 to be? If you have the time, check it!
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