
5 Fermat’s Method of Descent

The method of infinite descent is a standard approach to Diophantine equations. Feeling somewhat
like induction in reverse, arguments of this type have been known for millenia, though credit for
the method’s popularisation is often given to Pierre de Fermat who used it regularly. The method is
essentially a combination of two ideas:

Well-ordering/least positive integer principle Any non-empty set of positive integers has a minimum.

Descent Given a solution to an equation in positive integers, construct a smaller solution.

There are two standard applications, though the approach is similar in both.

1. To show that an equation has no solutions. If a solution exists in positive integers, there must be
a minimal such: constructing a smaller solution contradicts minimality.

2. To show the existence of, or construct solutions to, an equation. By starting with a solution to a
related equation, we produce a smaller solution to the equation we desire.

5.1 Contradiction by Descent: Fermat’s Last Theorem

We start with a very simple example of the method.

Example 5.1. The equationa x2 + y2 = 3z2 has no solutions (x, y, z) in integers where z 6= 0.

Suppose we have a solution (x, y, z). Without loss of generality, we may assume that z > 0. By
the least integer principle, we may also assume that our solution has z minimal. Taking remainders
modulo three, we see that

x2 + y2 ≡ 0 (mod 3)

Recalling that squares may only be congruent to 0 or 1 modulo 3, we conclude that

x2 ≡ y2 ≡ 0 =⇒ x ≡ y ≡ 0 mod 3

Writing x = 3a and y = 3b we obtain

9a2 + 9b2 = 3z2 =⇒ 3(a2 + b2) = z2 =⇒ 3 | z2 =⇒ 3 | z

Now let z = 3c and cancel 3’s to obtain

a2 + b2 = 3c2

We’ve therefore constructed another solution (a, b, c) = ( x
3 , y

3 , z
3 ) to the original equation. However

0 < c < z contradicts the minimality of z.

aEquivalently, the circle x2 + y2 = 3 contains no rational points.

The structure of the argument should seem familiar. Indeed if you recall the standard proof that
√

2
is irrational, you should be able to rephrase this as a proof by descent of the fact that the equation
x2 = 2y2 has no non-zero solutions in integers.
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In 1637 Fermat stated his famous Last Theorem in the margin of his copy of Diophantus’ Arithmetica.

Theorem 5.2. If n ∈N≥3, then the equation xn + yn = zn has no non-zero integer solutions.

In perhaps the most famous claim in mathematical history, Fermat stated that the margin was too
small to contain his argument. After his death in 1665, an edited version of the Arithmetica was
published including Fermat’s unproved notes and comments. As proofs to essentially everything
else slowly appeared, the last theorem steadily grew in notoriety. In 1994 (after 350 years!) Andrew
Wiles finally proved the last theorem via a related result regarding elliptic curves. Only the most
romantic modern mathematicians now believe that Fermat had a valid argument.

We’ll discuss elliptic curves later. For the present, we prove a modified version of the n = 4 case.

Theorem 5.3. x4 + y4 = w2 has no non-zero solutions in pairwise coprime integers.

Proof. Suppose such a solution (x, y, w) exists and WLOG assume that this has w minimal.

Clearly (x2, y2, w) is a primitive Pythagorean triple. WLOG assume that x2 is odd and y2 even. It
follows that ∃u, v coprime with exactly one odd and u > v such thata

x2 = u2 − v2, y2 = 2uv, w = u2 + v2

Consider the first equation modulo 4: observing that

λ2 ≡
{

0 mod 4 ⇐⇒ λ is even
1 mod 4 ⇐⇒ λ is odd

we see that u must be odd and v even. Since u and v are coprime, y2 = 2uv =⇒ u, 2v are perfect
squares. Let u = a2 and v = 2b2 where a, b must be coprime. But then

x2 = a4 − 4b4 =⇒ x2 + (2b2)2 = (a2)2

whence (x, 2b2, a2) is another primitive Pythagorean triple. We may therefore write

x = c2 − d2, 2b2 = 2cd, a2 = c2 + d2

for some coprime c, d. Finally b2 = cd =⇒ c, d are perfect squares: write c = r2, d = s2, from which

r4 + s4 = a2

To recap; starting with a solution (x, y, w), we have constructed a new solution (r, s, a) satisfying

a ≤ a2 = u ≤ u2 < w

This contradicts the minimality of w: by the method of descent, there are no solutions.

aA Pythagorean triple (α, β, γ) is primitive if α, β, γ are pairwise coprime. This parameterization was covered in 180A.

This recovers the n = 4 case of Fermat’s theorem since x4 + y4 = z4 = (z2)2.
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In the only relevant proof attributable to Fermat, he uses the descent method to prove that the equa-
tion w2 + y4 = z4 has no solutions in positive integers (Exercise 5). This is a little more irritating than
our version since multiple cases are required. The purpose of his result was in fact geometric (see
Exercise 4): a right triangle with integer sides cannot have area equal to a perfect square.
Over the next couple of centuries, mathematicians obtained proofs for several other cases. The first
proofs for specific exponents are generally credited as follows:

• n = 3: Euler (1770)

• n = 5: Legendre/Dirichlet (1825)

• n = 7: Lamé (1839)

Numerous other proofs for these cases appeared, as well as for a few redundant exponents such as
n = 6. All early proofs used some variation on the method of descent.

Exercises 1. To show that x4 + y4 = w2 has no solutions x, y, w ∈ N, explain why we need only
check that the equation has no pairwise coprime solutions.

2. Prove that it is enough to demonstrate Theorem 5.2 when n = 4 or is any odd prime.

3. Here is a descent argument due to Dedekind, showing the irrationality of
√

2.

• Assume that
√

2 is rational and write
√

2 = 1 + p
q where p < q.

• Then 2q2 = q2 + 2pq + p2 =⇒ p2 = q(q− 2p) =⇒ p
q = q−2p

p

• But now
√

2 = 1 + q−2p
p has fractional part with denominator p smaller than q. Repeating

the argument, we obtain a contradiction by descent.

Generalize the argument to prove that
√

n is irrational whenever n ∈N is not a perfect square.
(Hint: Write

√
n = m + p

q where m is the integer part of
√

n. . . )

4. Suppose that (a, b, c) is a Pythagorean triple and that these form the sides of a right-triangle
whose area is a perfect square: thus ∃d ∈N such that 1

2 ab = d2. Prove that

(a2 − b2)2 + (2d)4 = c4

(The next exercise shows that this arrangment is impossible)

5. We show that w2 + y4 = z4 has no non-zero integer solutions. As before, it is enough to show
that the equation has no solutions which are pairwise coprime. Assume, for contradiction, that
(w, y2, z2) is a primitive Pythagorean triple.

(a) Suppose w is even. Find an expression for (yz)2 and thus a solution to A2 + B4 = C4 where
A is odd and (A, B, C) are pairwise coprime. It is enough therefore to show that w cannot
be odd.

(b) Now suppose w is odd. Write z2 = u2 + v2 so that (u, v, z) is a primitive Pythagorean
triple. Treat the cases u odd/v odd separately, but show in either case that ∃a, b ∈ N

coprime a > b not both odd such that(y
2

)2
= ab(a2 − b2)

(c) All three factors of the right hand side above must be perfect squares: why?
(d) Show that we obtain a new solution to W2 + Y4 = Z4 with W odd and Z < z.
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5.2 Sums of Squares

Fermat also considered the question of which integers can be written as a sum of squares. For instance

9 = 32 + 02 and 10 = 32 + 12

are both the sum of two squares, although 7 is not. Indeed 7 is not the sum of three squares either,
though it is the sum of four squares

7 = 22 + 12 + 12 + 12

We’ll consider some generalizations later, but in the hope of finding a pattern, we first ask which
primes may be expressed as the sum of two squares. Here are the first few examples:

2 = 12 + 12, 5 = 22 + 12, 13 = 32 + 22, 17 = 42 + 12, 29 = 52 + 22, 37 = 62 + 12

The following result is immediately suggested.

Theorem 5.4. An odd prime p may be written as a sum of two squares if and only p ≡ 1 (mod 4).

We again use the method of descent, though this time constructively.

Proof. (⇒) If p = x2 + y2, then both x and y are non-zero modulo p. Taking Legendre symbols, we
see that

1 =

(
x2

p

)
=

(
−y2

p

)
=

(
−1
p

)
=⇒ p ≡ 1 (mod 4)

(⇐) Suppose that p is a prime congruent to 1 modulo 4. We must show that there exist integers x, y
such that x2 + y2 = p. We do this by descent:

1. Modulo p, the congruence x2 + 1 ≡ 0 has a solution x since−1 is a quadratic residue. By taking
y = 1, we may therefore assume the existence of a solution to an equation x2 + y2 = mp for
some integer 1 ≤ m < p. If m = 1 we are done. Otherwise. . .

2. Define{
u ≡ x (mod m)

v ≡ y (mod m)
such that |u| , |v| ≤ m

2

Since xu + yv, xv− yu and u2 + v2 are all divisible by m, we may divide the identity

(u2 + v2)(x2 + y2) = (xu + yv)2 + (xv− yu)2 (∗)

by m2 to obtain an equation in integers:

kp =

(
xu + yv

m

)2

+

(
xv− yu

m

)2

where k =
u2 + v2

m
≤ m

2

3. We have therefore constructed an integer solution to X2 +Y2 = kp with k < m. If k ≥ 2, simply
repeat the process from step 2: by descent, we must eventually reach k = 1.
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Example 5.5. As a concrete example of the descent at work, suppose we start with 122 + 12 = 5 · 29
where m = 5 and p = 29. Now let{

u ≡ 12 ≡ 2 (mod 5)
v ≡ 1 (mod 5)

whence

(122 + 12)(22 + 12) = (12 · 2 + 1 · 1)2 + (12 · 1− 1 · 2)2 = 252 + 102

=⇒ 29 =
122 + 12

5
· 22 + 12

5
= 52 + 22

For small primes p it is easy to find a solution to x2 + y2 = p by a simple search. For larger p the
proof provides a fairly efficient algorithm. For any a ∈ Z×p , consider x ≡ a

p−1
4 and observe that

x2 ≡ a
p−1

2 ≡
(

a
p

)
≡ ±1 (mod p) (Euler’s criterion)

Each a provides an even chance of producing a suitable candidate to start the algorithm. The above
example could have got started with a = 2 since 2

29−1
4 ≡ 12 and 122 ≡ −1 (mod 29).

Example 5.6. Let p = 953. A quick check with a calculator or computer shows that 3
953−1

4 ≡ 511
(mod 953) and that 5112 ≡ −1 (mod 953). We take x = 953− 511 = 442 and observe that

4422 + 12 = 205 · 953

With m = 205, let{
u ≡ 442 ≡ 32 (mod 205)
v ≡ 1 (mod 205)

whence

(4422 + 12)(322 + 12) = (442 · 32 + 1 · 1)2 + (442 · 1− 1 · 32)2 = 141452 + 4102

=⇒ 4422 + 12

205
· 322 + 12

205
=

(
14145

205

)2

+

(
410
205

)2

=⇒ 953 · 5 = 692 + 22

Now repeat with m = 5: let{
u ≡ 69 ≡ −1 (mod 5)
v ≡ 2 (mod 5)

whence

(692 + 22)
(
(−1)2 + 22) = (69 · (−1) + 2 · 2

)2
+
(
69 · 2− 2 · (−1)

)2
= 652 + 1402

=⇒ 692 + 22

5
· (−1)2 + 22

5
=

(
65
5

)2

+

(
140
5

)2

=⇒ 953 = 132 + 282
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Even this second example required a lot of work and would have been easier using a simple search
program. As the numbers get larger, however, the descent process becomes more efficient. For
example, the following steps took less than 10 minutes with the assistance of a pocket calculator.1

3721 · 15328637 = 2388262 + 12

125 · 15328637 = 437732 + 642

34 · 15328637 = 80232 + 213732

5 · 15328637 = 84082 + 24392

15328637 = 38512 + 7062

A simple computer program could do this in microseconds.

Generalizations

The identity (∗) shows that products of sums of squares are also sums of squares. With a little effort,
this affords a proof of the more general result:

Theorem 5.7. The integers which can be written as the sum of two squares are precisely those of
the form p1 · · · pkm2 where p1, . . . , pk are distinct primes; either 2 or congruent to 1 modulo 4.

Explicit expressions can be found using (∗): for example

248733 = 9 · 29 · 953 = 32(52 + 22)(132 + 282) = 32(65 + 56)2 + 32(140− 26)2

= 3632 + 3422

• Lagrange proved the four-square theorem in 1770: all positive integers may be expressed as the
sum of four squares (Exercise 5.2.4).

• In 1797 Legendre proved the harder theorem that an integer may be written as the sum of three
squares if and only if it is not of the form 4m(8n + 7).

• In 1813 Cauchy proved that any integer can be written as a sum of at most n n-polygonal
numbers (generalizations of triangular and square numbers). This was another of Fermat’s
many statements made without proof.

• In 1909 Hilbert proved that there exists a function g(k) such that every positive integer may be
written as a sum of g(k) kth powers: this is known as Waring’s problem. Hilbert’s proof is not
constructive but has since been improved and a complete formula for g(k) is conjectured.

• A variant of Waring’s problem considers how many squares, cubes, fourth-powers, etc., are
necessary to express any sufficiently large integer. For small integers, one often requires more kth

powers since there are few small powers available. For instance 23 requires nine cubes

23 = 23 + 23 + 13 + 13 + 13 + 13 + 13 + 13 + 13

and indeed g(3) = 9. However, it can be shown that every sufficiently large integer can be
written as the sum of at most seven cubes. At the present, it is unknown whether seven is
optimal: it is conjectured that four cubes are sufficient for all large integers.

1The first step comes from computing 2
15328637−1

4 (mod 15328637).
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Exercises 1. As in Example 5.5, start with 82 + 12 = 5 · 13 with m = 5 and p = 13 and apply the
descent argument to obtain 13 = 32 + 22.

2. Starting from the given data, perform the steps of the two-squares algorithm to find an expres-
sion for p as the sum of two squares.

(a) p = 997, m = 26, 997m = 1612 + 12

(b) p = 2089, m = 298, 2089m = 7892 + 12

3. (a) In the proof of Theorem 5.4, explain why we can assume that x2 + 1 = mp with m < p.

(b) Explain why the proof fails if we ever obtain u = x and v = y. However, show that this
can only happen if m ≥ p.

(c) The identity (u2 + v2)(x2 + y2) = (xu + yv)2 + (xv− yu)2 is related to the norms of com-
plex numbers: |w|2 |z|2 = |wz|2. Check the identity. What are w and z in this case?

(d) Use identity in (c) to find an expression for 1508 as a sum of two squares.

4. In this question we prove Lagrange’s result that every positive integer may be expressed as the
sum of four squares. Fair warning: this is very long. . .

(a) Verify the following identity:

(x2 + y2 + z2 + t2)(X2 + Y2 + Z2 + T2) = (xX + yY + zZ + tT)2

+ (xY− yX + zT − tZ)2

+ (xZ− zX + tY− yT)2

+ (xT − tX + yZ− zY)2

For those who have met quaternions, this is just the fact that |γ|2 |δ|2 = |γδ|2 where

γ = x + iy + jz + kt, δ = X− iY− jZ− kT

The identity in (a) says that the product of two sums of four squares is also a sum of four squares. Since
1 and 2 are trivial

1 = 12 + 02 + 02 + 02, 2 = 12 + 12 + 02 + 02

it is enough to prove that every odd prime may be written expressed. Throughout the rest of the question,
we assume that p is an odd prime.

(b) Use the box principle to prove that there exist integers x, y which satisfy

0 ≤ x, y ≤ p− 1
2

and 1 + x2 + y2 ≡ 0 (mod p)

(Hint: There are p+1
2 values in the range 0 ≤ x ≤ p−1

2 , no two of which are congruent modulo p.
The same is true for values −1− y2. Why must some x2 be congruent to some −1− y2?)

(c) By part (b), ∃m ∈ N such that x2 + y2 + z2 = mp and 0 ≤ x, y, z ≤ p−1
2 (take z = 1).

Explain why m < 3p
4
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Let n ∈ N be minimal such that np is the sum of four squares. We know that n < 3p
4 by part (c) and

want to prove that n = 1. Write np = x2 + y2 + z2 + t2 (x, y, z are likely different from in part (c)).

(d) Suppose n is even.

i. Prove that none, two or all four of x, y, z, t are even.
ii. Let x, y have the same parity, then so also do z, t. Check that

1
2

np =

(
x + y

2

)2

+

(
x− y

2

)2

+

(
z + t

2

)2

+

(
z− t

2

)2

Why is this a contradiction?

(e) Suppose n ≥ 3 is odd. Let X, Y, Z, T be congruent modulo n to x, y, z, t respectively and
such that |X| , |Y| , |Z| , |T| < n

2 .

i. Prove that X2 + Y2 + Z2 + T2 = kn for some 0 < k < n.
ii. Show that there exist integers A, B, C, D such that

(np)(kn) = A2 + B2 + C2 + D2

where each of A, B, C, D is divisible by n. Hence conclude that kp may be written as a
sum of four squares.

(f) Complete the proof of the main result.
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