
7 Elliptic Curves

To bring the discussion of Fermat’s Last Theorem full-circle, we reference another of Fermat’s ‘margin
notes’ from his copy of Diophantus’ Arithmetica. In 1650 Fermat claimed that the equation y2 = x3− 2
has only two solutions in integers; namely (x, y) = (3,±5). The first correct proof in writing came
around 150 years later.1 It is perhaps ironic that the proof of Fermat’s Last Theorem came via the
consideration of elliptic curves, of which y2 = x3 − 2 is an example. Here is the rough timeline:

• (1955-57) Yutaka Taniyama and Goro Shimura conjecture that every elliptic curve over the ra-
tional numbers is modular. Attempting to define what this means with any precision is beyond
this course, though it refers to the modular group of integer matrices

(
a b
c d

)
with determinant 1,

which play a recurring role in number theory.2

• (1984–86) Gerhard Frey, Jean-Pierre Serre and Ken Ribet prove that if (a, b, c) is a non-trivial
solution to Fermat’s equation xp + yp = zp where p is an odd prime, then the Frey curve

y2 = x(x− ap)(x + bp)

is a non-modular elliptic curve.

• (1986–94) Andrew Wiles (and Richard Taylor) prove that all semistable3 elliptic curves are
modular. Since the hypothetical Frey curves would be semistable, this shows that they can-
not exist and that Fermat’s equation therefore has no solutions. Based on the ideas of Wiles and
Taylor, the proof of the full Taniyama–Shimura conjecture was eventually completed in 2001
and is now known as the modularity theorem.

Wiles’ proof is far too difficult for us! In what follows, we discuss some of the beautiful structure of
elliptic curves and the way in which their study infuses number theory with geometry and algebra.
In particular, we discuss the question of finding integer and rational points on elliptic curves, and
some of the modularity patterns that arise when considering elliptic curves modulo primes.

Elliptic curves are more than merely interesting to those intent on proving 350-year-old conjectures.
They form the basis of a widely-used cryptographic system superior in several ways to the famous
RSA system, especially in situations where computing power is at a premium. Their structure also
drives the particularly efficient Lenstra algorithm for factorizing integers.

Before doing any of this, we need to define an elliptic curve, and then to understand (some) of the
components of the definition: this will require a little work. . .

1Euler thought he had proved this earlier, but he implicitly assumed unique factorization in the ring Z[i
√

2]: once this is
established the result is straightforward: write x3 = (y+ i

√
2)(y− i

√
2), show that the two factors on the RHS are coprime,

whence each must be a perfect cube in Z[i
√

2]; but if y + i
√

2 = (a + ib
√

2)3, then (a, b) = . . .
2Indeed we’ve met such several times in this course, for instance the matrices of successive convergents

(
pn pn−1
qn qn−1

)
of

continued fractions.
3As with modularity, a thorough definition of what this means requires a lot more algebraic geometry, though we’ll be

able to give a loose version at the end of the chapter.
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7.1 Algebraic Curves

Definition 7.1. A planar algebraic curve C is the set of points (x, y) satisfying some polynomial equa-
tion f (x, y) = 0. The degree of C is the degree of the polynomial f .
A curve is irreducible if its defining polynomial is irreducible:

f (x, y) = g(x, y)h(x, y) =⇒ g or h is constant

The values x, y can lie in various fields. Unless otherwise stated, we assume x, y ∈ R, though some-
times Q or C are more appropriate. Later in the chapter we shall even consider finite fields Zp.
We shall primarily consider irreducible curves of degree 2 (conics) and 3 (cubic curves) and shall adopt
the common convention of referring to the polynomial f (x, y) or the equation f = 0 as a curve.
Irreducibility is often a pain to check directly, so we will typically avoid doing so.

Examples 7.2. 1. Every degree 1 curve is irreducible: ax + by + c = 0 is a straight line.

2. The conic (x + 1)2 + y2 − 4 = 0 is a circle of radius 2 centered at the (−1, 0).

3. The curve (x2 + y2 − 1)(y− x2) = 0 has two irreducible components: a circle and a parabola.

4. It is conventional to insist that a curve contain at least two points. Consider, for example

C1 : x2 + y2 + 1 = 0 C2 : (x− 3)2 + y2 = 0

Both ‘curves’ are irreducible over R, but C1 is empty and C2 contains only one point (3, 0), so
we don’t consider these conics over R. Over C however, things are more interesting:

• C1 is a conic: it is irreducible and contains at least two points (±i, 0).

• C2 is not a conic, since it factorizes: (x− 3)2 + y2 = (x− 3 + iy)(x− 3− iy).

It might feel strange to use the word curve in C2, given that the real dimension of such an object
is two. For instance, if we write x = p + iq and y = r + is, and think about C2 ∼= R4, we see that

x2 + y2 + 1 = 0 ⇐⇒ p2 − q2 + r2 − s2 + 1 = 0 = pq + rs

C1 is therefore the intersection of two hypersurfaces in R4!

Since you’ve likely seen the following result in a linear algebra course, we omit the proof.

Theorem 7.3. A real conic ax2 + bxy + cy2 + dx + ey + g = 0 may be classified by the sign of
its discriminant ∆ := b2 − 4ac. More precisely, a change of variables amounting to rotation and
translation puts into one of the familiar canonical forms:

sgn ∆ + 0 −
conic Hyperbola Parabola Ellipse

canonical form x2

p2 − y2

q2 = 1 y2 = 4kx x2

p2 +
y2

q2 = 1

Example 7.4. The curve f (x, y) = 7x2 − 3xy − 2y2 + 2x + 2 is a hyperbola: it is irreducible, has
discriminant ∆ = 9 + 14 > 0, and contains at least two points (x, y) = (0,±1).
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Canonical form Cubic Curves

We will mostly consider cubic curves since elliptic curves will
prove to be a special case. It can be shown that all (irreducible)
cubic curves over R can be transformed to one of the four canon-
ical forms shown. All have equations

y2 = g(x) or equivalently f (x, y) = y2 − g(x) = 0

where g is a cubic polynomial in x. The classification depends on
the number of distinct real roots of g.

y

x
α β γ

I: y2 = (x− α)(x− β)(x− γ)

y

x
β α

y

x
α

y

x
α

II: y2 = (x− α)2(x− β) III: y2 = (x− α)3 IV: y2 = (x− α)q(x)

In type IV, q(x) is an irreducible quadratic. If we work over C, then type IV does not exist since all
quadratics may be factorized.
The classification requires more subtle changes of co-ordinates than merely rotation and translation.
The details are not relevant to us since almost all examples will already be in canonical form.

Example 7.5. Fermat’s curve y2 = x3− 2 is in canonical form IV over R and type I over C. If we let
α = 3
√

2 ∈ R and ζ = e2πi/3, then

y2 = (x− α)(x2 + αx + α2) = (x− α)(x− αζ)(x− αζ2)

Singular Points and Non-singular Curves

In forms II and III, g(x) has a repeated root at α and we call (α, 0) a singular point. More specifically:

• Type II has a double point where the curve crosses itself;

• Type III has a cusp, or triple point.

A better way of thinking about singular points is that the gradient of the curve is not well-defined.

Definition 7.6. A point p on an algebraic curve f (x, y) = 0 is singular if ∇ f (p) = 0. A curve is
non-singular if it has no singular points.

Lemma 7.7. 1. According to the definition, only canonical forms I and IV are non-singular.

2. At a non-singular point p = (x0, y0) there is a well-defined (and unique) tangent line

fx(p)(x− x0) + fy(p)(y− y0) = 0
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Examples 7.8. 1. Let C be defined by f (x, y) = y2 − x3 + 7x + 6. Then

∇ f =

(−3x2 + 7
2y

)
=

(
0
0

)
⇐⇒ x = ±

√
7
3

, y = 0

The points (±
√

7
3 , 0) do not lie on the curve, so C is non-singular. This also follows from the

fact that C is in canonical form I:

y2 = (x + 1)(x + 2)(x− 3)

2. Define C by f (x, y) = x2 + xy2 + 2x + 1. Then

∇ f =

(
2x + y2 + 2

2xy

)
=

(
0
0

)
⇐⇒ (x, y) = (−1, 0)

Since f (−1, 0) = 0 it follows that C has one singular point. Deciding whether this is a double
point or a cusp is a trickier. Consider points on a tiny circle of radius ε centered at (−1, 0):

(x, y) = (−1 + ε cos θ, ε sin θ)

Substituting into f (x, y) = 0, we obtain

ε2 cos 2θ + ε3 cos θ sin2θ = 0

Since ε3 � ε2 we see that cos 2θ = 0, resulting in four
nearby points corresponding to θ = ±π

4 ,± 3π
4 . We there-

fore have a double point.

−3

3

−15 −10 −5 x

y

Observe that C looks like canonical form II but with a twist: β lies at infinity. We’ll pursue this
in the next section.

Exercises 1. Decide whether the following curves are non-singular and compute the tangent line
at (1, 2). For part (c), identify the type of conic.

(a) xy2 + 2x− 6 = 0
(b) 2x2 + xy− y2 + 2x− y = 0
(c) x2 − 3xy + 4y2 + x− 5y− 2 = 0

2. Suppose that f (x, y) = g(x, y)h(x, y) and g(p) = 0 = h(p). Show that p is a singular point of f .

3. Let f (x, y) = y2− g(x). By computing∇ f , show that any singular point must be (α, 0) where α
is a repeated root of g. Hence prove part 1 of Lemma 7.7: a canonical form cubic is non-singular
if and only if g has distinct roots.

4. Suppose a degree two curve C has a singular point p = (x0, y0).

(a) With respect to the new co-ordinates X = x− x0, Y = y− y0, explain why C has equation
aX2 + bXY + cY2 = 0.

(b) Hence show that C is a pair of intersecting straight lines.
(c) How does the value of the discriminant ∆ depend on these lines?
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7.2 Homogenization and Projective Geometry

Example 7.8.2 shows that viewing cubic curves in canonical form requires us to think about points at
infinity. This is even useful for quadratic curves: putting together Exercises 7.1.2 and 4 we see that
all degree two curves fall in to one of the following categories:

• Conics: non-singular and irreducible.

• A pair of intersecting straight lines: singular and non-irreducible (factorizable).

• A pair of parallel lines: non-irreducible. While such have no singular points in R2, the idea that
parallel lines meet at infinity suggests that we should also describe these curves as singular.

Definition 7.9. The homogenization of an algebraic curve is the equation obtained by multiplying
terms by powers of a new variable until all terms have the same degree as the original curve. A
homogenized curve is also called a projective curve.

Examples 7.10. 1. Homogenizing the circle x2 + y2 = 3 results in a projective curve X2 +Y2 = 3Z2.

2. The homogenization of the hyperbola x2 − y2 = 3 is the projective curve X2 −Y2 = 3Z2.

3. The homogenization of x2 + xy2 + 2x + 1 = 0 is X2Z + XY2 + 2XZ2 + Z3 = 0.

Definition 7.11. The real projective plane RP2 is defined via an equivalence relation on the set of
non-zero points in R3:

RP2 = R3
∗
/
∼ where (X, Y, Z) ∼ (A, B, C) ⇐⇒

( X
Y
Z

)
‖
( A

B
C

)
Points in RP2 correspond to lines through the origin in R3, and are denoted using homogeneous co-
ordinates [X, Y, Z] ∈ RP2.
The set of points with Z = 0 is the ideal line, any point of which is an ideal point.
We may also consider the complex projective plane CP2, though typically we’ll avoid this.

One can visualize RP2 as R2 together with all the ‘points at infinity’ on the ideal line. In particular:

Finite Points (x, y) ∈ R2 corresponds to [x, y, 1] ∈ RP2. Similarly [X, Y, Z]! (X
Z , Y

Z ) if Z 6= 0.

Ideal Points [X, Y, 0] may be visualized as a point at infinity in the direction ±
(

X
Y

)
.

Scaling [X, Y, Z] = [λX, λY, λZ] for any non-zero λ.

Warning! [0, 0, 0] does not exist and is not a valid point in RP2!

We revisit our above examples in this context.

Examples (7.10, mk. II). 1. The projective curve X2 + Y2 = 3Z2 has no ideal points, since

Z = 0 =⇒ X2 + Y2 = 0 =⇒ X = Y = 0

does not produce a legitimate point in RP2. In CP2 however, the curve contain two ideal points
[1,±i, 0].
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2. Given the projectivized hyperbola X2 − Y2 = 3Z2 we see that Z = 0 =⇒ X = ±Y which
results in two ideal points [1,±1, 0]. This reflects the fact that the hyperbola has asymptotes
y = ±x.

−2

2

−2 2 x

y [1, 1, 0]

[1,−1, 0][1, 1, 0]

[1,−1, 0]

1 2 4 8−1−2−4−8

1
2

4
8

−1
−2

−4
−8

The pictures show the hyperbola in R2 and a representation in RP2 where the ideal line
(dashed) can be visualised:a Note that [1, 1, 0] = [−1,−1, 0]: the blue dots represent the same
ideal point!

3. The projective curve X2Z + XY2 + 2XZ2 + Z3 = 0 has two ideal points

Z = 0 =⇒ XY2 = 0 [1, 0, 0], [0, 1, 0]

These suggest points at infinity in the horizontal and vertical directions.

−3

3

−15 −10 −5 x

y

[0, 1, 0]

[1, 0, 0]

1 2 4 8−1−2−4−8

1
2

4
8

−1
−2

−4
−8

Note that the curve appears to be tangent to the ideal line at [1, 0, 0]. Our next goal is to be able
to check this algebraically. . .

aExplicitly, we used
(

x
y

)
7→
(

2
π tan−1

√
x2+y2

3

)(
x
y

)
to map R2 bijectively to the inside of the unit circle.
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Non-singular Projective Curves

To discuss whether ideal points are singular, we extend Definition 7.6 to the projective plane.

Definition 7.12. A projective curve C̃ defined by the homogeneous equation F(X, Y, Z) = 0 is
non-singular at [P] if and only if ∇F(P) 6= 0. In such a case, its tangent line at [P] has equation

∇F(P) ·
( X

Y
Z

)
= 0 or FX(P)X + FY(P)Y + FZ(P)Z = 0

This definition extends our previous notions of non-singularity and tangency.

Theorem 7.13. Let C be an algebraic curve with homogenization C̃. Let p ∈ C correspond to the
non-ideal point [P] ∈ C̃. Then:

1. [P] is non-singular if and only if p is non-singular.

2. The homogenization of the tangent line at p is the tangent line at [P].

Instead of proving the theorem (have a go if you want to test yourself!), we work our examples using
both definitions and compare. To summarize; a projective curve C̃ is non-singular if and only if C is
non-singular and C̃ is non-singular at all ideal points.

Examples (7.10, mk. III). 2. The hyperbola C : f (x, y) = x2 − y2 − 3 and its homogenization
C̃ : F(X, Y, Z) = X2 −Y2 − 3Z2 have gradients

∇ f =

(
2x
−2y

)
∇F =

( 2X
−2Y
−6Z

)
The first is zero only at the origin (x, y) = (0, 0): this isn’t on the curve, so the finite curve C is
non-singular. Similarly, ∇F = 0 ⇐⇒ X = Y = Z = 0: but [0, 0, 0] is not a valid point, so the
homogenized curve C̃ is also non-singular.

Now we compute the tangent lines at the corresponding points p = ( 7
4 ,− 1

4 ) and [P] = [7,−1, 4]:

∇ f (p) =
( 7

2
1
2

)
=⇒ 7

2 (x− 7
4 ) +

1
2 (y + 1

4 ) = 0 =⇒ 7x + y = 12

∇F(P) =
( 14

2
−24

)
=⇒ 14X + 2Y− 24Z = 0 =⇒ 7X + Y = 12Z

The tangent line in RP2 is plainly the homogenization of that in R2.

We can even compute the tangent lines at the ideal points [1,±1, 0]: e.g.

∇F(1, 1, 0) =
( 2
−2
0

)
=⇒ 2X− 2Y = 0 =⇒ Y = X

Similarly, the curve is tangent to Y = −X at [1,−1, 0]. This meshes with the fact that the
hyperbola has asymptotes y = ±x.
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3. The curves C : f (x, y) = x2 + xy2 + 2x + 1 and C̃ : F(X, Y, Z) = X2Z + XY2 + 2XZ2 + Z3 have

∇ f =

(
2x + y2 + 2

2xy

)
∇F =

(
2XZ+Y2+2Z2

2XY
X2+4XZ+3Z2

)
In R2, the first is zero only at (x, y) = (−1, 0): this is a singular point on the curve: recall the
graph where it is clear that this is a double point. For the homogenization, the result is the same

∇F = 0 ⇐⇒ [X, Y, Z] = [−1, 0, 1]

We now compute the tangent lines at the ideal points:

• ∇F(1, 0, 0) =
( 0

0
1

)
=⇒ Z = 0. The curve is tangent to the ideal line at [1, 0, 0]. This fits

with the curve being canonical form III in disguise, with β moved to the ideal line.

• ∇F(0, 1, 0) =
(

1
0
0

)
=⇒ X = 0. Again this makes sense, since the finite curve C is

asymptotic to the line x = 0.

Exercises 1. Verify that the circle x2 + y2 − 3 = 0 in Example 7.10 part 1 has non-singular homog-
enization X2 + Y2 − 3Z2 = 0.

2. Consider Fermat’s curve C : f (x, y) = y2 − x3 + 2.

(a) Find the homeogenization C̃ and show that it has exactly one ideal point.
(b) Find the equation of the tangent line at the point (3, 5) in two ways:

i. By working directly with f in R2.
ii. By working with the homogenized polynomial F in RP2.

(c) Check that Fermat’s curve is everywhere non-singular, including at its ideal point.
(d) Show that Fermat’s curve is tangent to the ideal line at its ideal point.

3. Show that the homogenization of the real quartic curve C : xy3 + x4 − 2 = 0 is non-singular.
Also show that it has a single ideal point and find its tangent line there.

4. Explain why proving Fermat’s Last Theorem amounts to showing that, when n ≥ 3, the only
rational points on xn + yn = 1 are (±1, 0) and (0,±1).

5. (a) If a quadratic curve C consists of two parallel lines, show that its homogenization C̃ is
singular at its ideal point.

(b) Consider the projective quadratic C̃ : aX2 + bXY + cY2 + dXZ + eYZ + gZ2. Prove that

C̃ is non-singular ⇐⇒ det

2a b d
b 2c e
d e 2g

 6= 0

Together with our earlier remarks, this says that a conic is better defined as a non-singular projective
curve of degree 2, and that the above determinant would make a more useful discriminant. Since the
matrix is symmetric, the spectral theorem in R3 says it is orthogonally diagonalizable. Every projective
quadratic therefore has the form pX2 + qY2 + rZ2 = 0 in some co-ordinates with ‘discriminant’ pqr.
Plainly p, q, r cannot have the same sign: the upshot is that all conics are equivalent in RP2.
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7.3 Elliptic Curves & Addition

We finally(!) define our objects of study.

Definition 7.14. An elliptic curve over Q is a non-singular projective cubic with rational coefficients,
containing at least one rational point.

Even though an elliptic curve is projective, it is common to state it in standard/finite form. From now
on we’ll use C to denote curves, whether written in R2 or RP2.

Example 7.15. The curve xy2 + x2− x3 + 2 = 0 is elliptic. This certainly has rational coefficients and
contains a rational point (2, 1). To check non-singularity, compute the gradient of its homogenization
F(X, Y, Z) = XY2 + X2Z− X3 + 2Z3:

∇F =

Y2 + 2XZ− 3X2

2XY
X2 + 6Z2


is non-zero unless X = Y = Z = 0, which does not yield a
legitimate point.
A plot in RP2 is shown, as are the ideal points and the tan-
gent lines at these points:

Point Tangent line Dehomogenized
[0, 1, 0] X = 0 x = 0
[1, 1, 0] −2X + 2Y + Z = 0 y = x− 1

2
[1,−1, 0] −2X− 2Y + Z = 0 y = 1

2 − x

1 2 4 8−1−2−4−8

1
2

4
8

−1
−2

−4
−8

Canonical/Weierstraß forms and the Discriminant

We will normally work with elliptic curves in canonical form; more specifically the Weierstraß form

y2 = x3 + cx + d

A simple change of co-ordinates can put any canonical form elliptic curve in Weierstraß form. It is
moreover easy to check whether curves in canonical form are elliptic:

Theorem 7.16. Suppose C is a canonical form cubic y2 = g(x). Then:

1. C has a unique ideal point σ = [0, 1, 0], at which the ideal line Z = 0 is tangent. This can be
taken as the rational point satisfying Definition 7.14.

2. Supposing g has rational coefficients, C is elliptic if and only if g(x) = 0 has distinct roots.

We mostly leave this as an exercise except to observe that canonical forms I and IV are elliptic, and
that II and III are not. To further simplify matters, we introduce a useful quantity which detects when
a cubic has disinct roots.
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Definition 7.17. Suppose the zeros of the cubic g(x) = ax3 + bx2 + cx + d are µ1, µ2, µ3 ∈ C. The
discriminant of g is defined to be

∆ := a4 ∏
j<k

(µj − µk)
2 = a4(µ1 − µ2)

2(µ1 − µ3)
2(µ2 − µ3)

2

Theorem 7.18. 1. ∆ = 0 ⇐⇒ g has a repeated root.a In particular, a cubic curve y2 = g(x) with
rational coefficients is elliptic if and only if ∆ 6= 0.

2. ∆ = (b2 − 4ac)(c2 − 4bd) + 2abcd− 27a2d2. For reference, the common simplifications are

Monic case: x3 + bx2 + cx + d =⇒ ∆ = (b2 − 4c)(c2 − 4bd) + 2bcd− 27d2

Weierstraß form: x3 + cx + d =⇒ ∆ = −4c3 − 27d2

3. If g has integer coefficients then ∆ is an integer.

aIf the coefficients of g are real, it can also be seen that ∆ > 0 ⇐⇒ the cubic has distinct real roots.

The first is obvious from the definition. The second is extremely tedious to prove, after which the
third is obvious. Only the Weierstraß form expression is worth memorizing.

Examples 7.19. 1. The curve y2 = x3 − 2x + 1 is elliptic since ∆ = −4 · (−2)3 − 27 = 5 is non-zero.
Since ∆ > 0, this has canonical form I.

2. The curve y2 = x3 − 3
4 x + 1

4 is not elliptic since ∆ = −4 · (− 3
4 )

3 − 27 · (− 1
4 )

2 = 0. Indeed this
can be factored as y2 = (x− 1

2 )
2(x + 1) with the repeated root clear. This has canonical form II.

3. The elliptic curve y2 = (x + 7)(x2 + 1) = (x + 7)(x + i)(x− i) has

∆ = (−7− i)2(−7 + i)2(i + i)2 = −10000 < 0

where, for variety, we used the definition of ∆.

Renderings in projective space are below. The tangency of the ideal line at σ = [0, 1, 0] should be
clear. The fact that ∆ ∈ Z whenever the coefficients of g are integers will be of use to us later.

2 4 8−2−4−8

2
4
8

−2
−4
−8

2 4 8−2−4−8

2
4
8

−2
−4
−8

4 8 16−4−8−16

4
8

16

−4
−8
−16

Example 1: ∆ > 0 Example 2: ∆ = 0 Example 3: ∆ < 0
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Addition on Elliptic Curves

We now consider the property that makes elliptic curves truly special. Given p, q on a general elliptic
curve C with marked rational point σ, here is the construction of p + q.

1. Construct the line ` joining p and q. If q = p, let ` be the tangent line at p: this exists by
non-singularity.

2. Including multipicities, the set of intersections ` ∩ C contains exactly three points:4 p, q and a
third point p ∗ q.

3. Repeat the exercise with p ∗ q and σ to define

p + q := (p ∗ q) ∗ σ

If p = q we write 2p = p + p, etc.

This construction is particularly nice if C is in canonical form and we choose σ = [0, 1, 0]. If p ∗ q 6= σ,
then the line joining it to σ is vertical and, by symmetry, p + q is the vertical reflection of p ∗ q. For
instance:

Example 7.20. Let C̃ be the elliptic curve defined by

y2 = (x + 7)(x2 + 1)

This contains the points p = (1, 4) and q = (3, 10). The line
joining these has equation

y− 4 =
10− 4
3− 1

(x− 1) =⇒ y = 3x + 1

Substituting this into the equation for the curve, we obtain

(3x + 1)2 = x3 + 7x2 + x + 7

=⇒ x3 − 2x2 − 5x + 6 = 0 (∗)
=⇒ (x− 1)(x− 3)(x + 2) = 0
=⇒ p ∗ q = (−2,−5)
=⇒ p + q = (−2, 5)

−12

−8

−4

4

8

12

−8 −4 4

p

q

p ∗ q

p + q

σ

Computing the x-coordinate of p ∗ q (and thus p + q) is easier than you think since we already know
two of the roots of the cubic (∗). In fact factorization is completely unnecessary:

Lemma 7.21. The sum of the roots of the cubic ax3 + bx2 + cx + d = 0 is µ1 + µ2 + µ3 = − b
a .

Proof. Simply multiply out a(x− µ1)(x− µ2)(x− µ3) = 0. . .

4This is guaranteed to happen in projective space by Bézout’s Theorem.
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Example (7.20, continued.). Let µ1, µ2, µ3 be the x co-ordinates of p, q and p ∗ q. Then

µ2 = −µ0 − µ1 −
b
a
= −1− 3 + 2 = −2

We therefore only needed to expand (∗) as far as the x2 term to find the third root!
We perform another couple of additions, this time requiring tangent lines:

First compute the gradient of f (x, y) = y2− x3− 7x2− x− 7

∇ f =

(−3x2 − 14x− 1
2y

)
At p = (1, 4) this yields the tangent line

−18(x− 1) + 8(y− 4) = 0 =⇒ y =
1
4
(9x + 7)

Substitute into the cubic and apply the lemma:

81
16

x2 + · · · = x3 + 7x2 + · · ·

=⇒ 2xp + xp∗p =
81
16
− 7 = −31

16
=⇒ xp∗p = −63

16
−12

−8

−4

4

8

12

−8 −4 4

p
r

p ∗ p

2p

σ = 2r

Substituting into the equation for the tangent line, we obtain yp∗p = − 455
64 . Therefore

2p = (p ∗ p) ∗ σ =

(
−63

16
,

455
64

)
Finally let r = (−7, 0). Since the tangent line at r is vertical, we have r ∗ r = σ. Moreover, C is tangent
to the ideal line Z = 0 at σ, whence

2r = (r ∗ r) ∗ σ = σ ∗ σ = σ

The choice of the + symbol is merited by the next result.

Theorem 7.22. If C is an elliptic curve, then (C,+) is an
abelian group with identity σ.

The identity and inverse properties are left as exercises.
Commutativity p + q = q + p should be obvious since the
roles of p and q are symmetric in the definition of p ∗ q.
As often in group theory, the tough part is the justification of
associativity (p + q) + r = p + (q + r). In this case it follows
fairly easily from the Cayley–Bacharach Theorem, a corollary of
Bézout’s Theorem. The details would take us too far afield,
so the picture will suffice as an example.

p

q

r
p ∗ q

p + q
q ∗ r

q + r

(p + q) ∗ r = p ∗ (q + r)

p + q + r
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Exercises 1. Use the discriminant to check that the curve y2 = (x + 2)
(
8(x− 1)2 + 1

)
is elliptic.

2. Check that the curve y2 = x3 − x + 1 is elliptic. If p = (1, 1), verify that

2p = (−1, 1), 3p = (0,−1), 4p = (3,−5), 5p = (5, 11), 6p = ( 1
4 , 7

8 )

3. Given p = (−1, 4) and q = (2, 5) on the curve y2 = x3 + 17, show that

p + q = (− 8
9 ,− 109

27 ), 2p = ( 137
64 ,− 2651

512 )

4. (a) Suppose that y2 = ax3 + bx2 + cx + d is a cubic. Let x = a(u − b
3a2 ) and y = a2v to

transform the curve to Weierstrass form (i.e. a = 1, b = 0).
(b) Suppose now that y2 = x3 + cx + d where c, d ∈ Q. Let k be the least common multiple

of the denominators of c and d. Show that u = k2x and v = k3y transform the curve to a
Weierstraß form with integer coefficients.

5. Suppose C : y2 = ax3 + bx2 + cx + d is an elliptic curve in canonical form with σ = [0, 1, 0].
Given finite points p = (x0, y0) and q = (x1, y1) on C where x0 6= x1, use Lemma 7.21 to prove
that

xp+q =
m2 − b

a
− x0 − x1 and yp+q = m(x0 − xp+q)− y0 where m =

y1 − y0

x1 − x0

Now find an expression for the co-ordinates of 2p whenever y0 6= 0.

These expressions can be easily be fed to a computer for rapid computation.

6. We prove Theorem 7.16 (and a bit more). Let g(x) be a polynomial of degree n.

(a) Prove that g(x) = 0 has a repeated root at x = µ if and only if g(µ) = g′(µ) = 0.
(Hint: write g(x) = (x− µ)kh(x), where k is the multiplicity of the root x = µ)

(b) Let C be defined by f (x, y) = y2 − g(x). Compute the gradient of f and use (a) to show
that all finite points on C are non-singular if and only if g has distinct roots.

(c) If n = 3, argue that the cubic C contains a unique ideal point σ = [0, 1, 0] and that the curve
is tangent to the ideal line at σ.

7. Suppose that C is an elliptic curve with marked point σ. We establish the identity and inverse
properties for the group operation +.

(a) (Identity) The point p + σ = (p ∗ σ) ∗ σ lies on the intersection of C and the line ` joining
p ∗ σ and σ. Explain why ` ∩ C = {p, σ, p ∗ σ} and thus why p + σ = p.
(Answer for canonical form curves if you like, though this is not necessary and σ need not be
[0, 1, 0]. Indeed you may find it easier to draw pictures if σ is finite!)

(b) (Inverse) Let ` be the tangent line to C at σ and let τ ∈ C be such that ` ∩ C = {σ, τ}. For
any p ∈ C, prove that p + (p ∗ τ) = σ, whence −p = p ∗ τ.
(If C is in canonical form and σ = [0, 1, 0], then τ = σ and −p = p ∗ σ: the tangent at σ has a
triple intersection!)

The whole discussion can be extended to general cubic curves: the non-singular points form a group.

8. C : y2 = x3 − 3x + 2 = (x + 2)(x− 1)2 is not an elliptic curve. Suppose that p, q ∈ C such that
both p, q 6= (1, 0). Prove that p + q 6= (1, 0).
(Hint: think about all lines through (−1, 0). . . )
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7.4 Rational Points on Elliptic Curves

A standard problem when given an elliptic curve is to find all the rational points lying on it. There
may be very few, or infinitely many. For example:

1. Fermat’s curve x3 + y3 = 1 famously contains only two finite rational points p = (1, 0) and
q = (0, 1). Together with the unique ideal point σ = [1,−1, 0], these form a group isomorphic
to Z3: it is nice exercise to check that q = 2p and σ = 3p, etc.

2. The curve y2 = x3 + 17 can be shown to contain infinitely many rational points. Indeed the
point p = (−1, 4) generates an infinite sequence of distinct rational points p, 2p, 3p, 4p, 5p, . . .

The examples suggest the following:

Corollary 7.23. If p and q are rational points on an elliptic curve, so also is p + q. Moreover, the set
of rational points on the curve CQ forms an abelian group under +.

Proof. The line ` through p and q has rational coefficients: this is also true when p = q and ` is the
tangent line. Substitute ` into C to obtain a cubic with rational coefficients and two rational roots (the
x or y co-ordinates of p and q). The third root, a co-ordinate of p ∗ q, is rational by Lemma 7.21: the
other co-ordinate of p ∗ q is rational via `.
Since σ is rational, the same applies to p + q = (p ∗ q) ∗ σ and, by Exercise 7.3.7, to −p. We conclude
that CQ is a subgroup of C.

For a curve in canonical form, Exercise 7.3.5 shows the rationality of p + q explicitly.
An early key result regarding the group CQ was proved in the 1920’s.

Theorem 7.24 (Mordell). CQ is finitely generated: all rational points can be produced from a finite
subset using only the operation +. It followsa that CQ

∼= T ×Zr for some finite subgroup T (the
torsion subgroup) and r ∈N0 (the rank of C).

aThis is just the fundamental theorem of finitely generated abelian groups applied to CQ.

The proof of Mordell’s theorem is accessible, but too involved for us.5 Computing the rank of an
elliptic curve is exceedingly difficult and is the topic of much research. For instance, it is conjectured
that roughly half of elliptic curves have rank zero, half have rank 1, and a relatively tiny number
have rank ≥ 2.
By contrast, and as we’ll see below, it is often very easy to find the torsion subgroup. Note that being
in the torsion subgroup means that a point has finite order: ∃m ∈N such that mp = σ.

Example 7.25. As we saw above, the curve x3 + y3 = 1 has CQ = {σ, (1, 0), (0, 1)}. Clearly C has
rank zero and torsion T ∼= Z3

Plainly σ is the only element of order 1 on CQ. Our next result shows how few possibilities there are
for the finite order of an element.

5The ‘size’ of a rational point on C must be suitably defined, then a descent argument is performed showing how
rational points may be produced from those with smaller size. Look it up if you are interested.
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Theorem 7.26 (Mazur 1977/8). Suppose a rational point on an elliptic curve C has finite order k.
Then 1 ≤ k ≤ 10 or k = 12. Moreover, the torsion of CQ is isomorphic to one of the following:

• Zn where n = 1, 2, . . . 10 or 12;

• Z2 ×Z2n where n = 1, 2, 3 or 4.

The next result provides a method for computing the torsion using the discriminant (Definition 7.17).

Theorem 7.27 (Nagell–Lutz 1935/7). Suppose (x, y) is a rational point of finite order on the elliptic
curve y2 = g(x) = x3 + bx2 + cx + d, where b, c, d ∈ Z. Then x, y ∈ Z and either y = 0 or y2 | ∆.

Here is the process for finding the torsion.

• Compute ∆ and find all integers y = 0 or satisfying y2 | ∆.

• If there exists an integer x satisfying p = (x, y) ∈ C, keep the point and compute 2p, 3p, etc.

• If np = (x, y) ever has x, y 6∈ Z or y2 - ∆, stop: p does not have finite order.

• If np = σ for some n, then p has finite order. By Mazur’s Theorem, you don’t have to look far.

Before giving the proof, here are several examples. We also state the rank of each curve.

Examples 7.28. 1. Consider the elliptic curve y2 = x3 + 1 with discriminant ∆ = −27.
Since 3 is the only prime dividing ∆, we see that a rational point
p = (x, y) of finite order must have y = 0,±1 or ±3. These all
yield points on the curve:

p := (−1, 0), ±q := (0,±1), ±r := (2,±3)

The relationship should be obvious from the picture, but we com-
pute to make sure. With f (x, y) = y2 − x3 − 1, find the tangent
line at r:

∇ f (r) =
(−12

6

)
=⇒ −2(x− 2) + (y− 3) = 0

Substituting into the cubic yields

x3 − 4x2 + · · · = 0 =⇒ xr + xr + xr∗r = 4
=⇒ 2r = (0, 1) = q

It can similarly be checked that p, q, r have orders 2, 3 and 6 re-
spectively. Together with σ, the torsion is isomorphic to Z6 ∼=
Z2 ×Z3.

This example has rank zero: there are no other rational points on
the curve! If you want a challenge. . .

−2

2

y

1 2
x

p

q

−q

r

−r
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2. The curve y2 = x3 + 4 has discriminant ∆ = −27 · 42.

For points (x, y) of finite order Nagell–Lutz says that y = 0, ±1,
±2, ±3, ±4, ±6, or ±12. However, the only integer points with
such are ±p := (0,±2).

With f (x, y) = y2 − x3 − 4, find the tangent line at p = (0, 2):

∇ f (p) =
(

0
4

)
=⇒ 4(y− 2) = 0

which is the horizontal line y = 2. Substituting into equation
y2 = x3 + 4 yields x3 = 0, whence p ∗ p = p and 2p = −p =
(0,−2). Since p and 2p are vertically aligned, we have 3p = 2p +
p = σ. Clearly p and −p both have order three: together with σ,
the torsion is isomorphic to Z3.

The rank is again zero: the curve has only three rational points.

−1

1

y

−1 1
x

p

−p

3. The converse to Nagell–Lutz is false: there could be points (x, y)
on C with x, y ∈ Z and y2 | ∆, but where (x, y) has infinite order.
Exercise 7.3.2 provides such.

If y2 = x3 − x + 1 then ∆ = −23. To find the rational points
of finite order it suffices to check y = ±1. Taking p = (1, 1) we
obtain, 2p = (−1, 1), 3p = (0,−1), 4p = (3,−5). Since (−5)2 - ∆,
we see that 4p does not have finite order, and so neither does p.

Repeating the exercise with (1,−1) simply switches the sign of
all y co-ordinates. The curve is therefore torsion-free: T = {σ} is
trivial.

It is significantly harder to show that the rank of this curve is 1:
indeed p = (1, 1) is a generator and µ : Z → CQ : m 7→ mp is an
isomorphism.

−2

−4

4

2

y

−2 2
x

p2p

3p

4p

−p−2p

−3p

−4p

4. The curve y2 = x3 + 17 is torsion-free and has rank two: p = (−2, 3) and q = (−1, 4) are
generators, whence µ : Z2 → CQ : (m, n) 7→ mp+ nq is an isomorphism. Check the claim about
being torsion-free yourself.

5. Consider the elliptic curve y2 = 1
2 x3 + 1

4 . To apply Nagell–Lutz we first have to put this in the
correct form. Multiplying by 16, we obtain

16y2 = 8x3 + 4 =⇒ (4y)2 = (2x)3 + 4 =⇒ v2 = u3 + 4

where (u, v) = (2x, 4y). Clearly the rational points on the two curves correspond. Moreover,
the transformation is linear, so straight lines map to straight lines and nothing about the group
operation is altered. It follows that the curve has rank zero and that the torsion is simply the
translation of that of y2 = x3 + 4, namely

T = {σ, (0, 1
2 ), (0,− 1

2 )}
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Alternative versions of Nagell–Lutz are available for elliptic curves in other standard forms. If you
want more examples, you can find thousands here with explanations of terminology6 For instance,
try typing [0, 0, 0,−1, 1] or [0, 0, 0, 0, 17] into the search box. . .

Sketch Proof of Nagell–Lutz. 1. The difficult part is showing that any rational point of finite order
is an integer point. This is somewhat involved. Once this is out of the way. . .

2. If p = (x, y) ∈ C, then Exercise 7.3.5 shows that 2p has x co-ordinate

x4 − 2cx2 − 8dx + c2 − 4bd
4(x3 + bx2 + cx + d)

=:
h(x)

4g(x)
=

h(x)
4y2

3. There exist polynomials G(x), H(x) with integer coefficients for which

∆ = G(x)g(x) + H(x)h(x)

Indeed G(x) = 3x3 − bx2 − 5cx + 2bc− 27d and H(x) = −3x2 − 2bx + b2 − 4c are such.

4. If y 6= 0 and p has finite order, then 2p also has finite order whence both have integer co-
ordinates. It follows from part 2 that

4y2 | h(x) =⇒ y2 | h(x)

Since y2 = g(x), part 3 says that y2 | ∆.

Exercises 1. Suppose that a point p on an elliptic curve has finite order n: i.e. np = σ. Prove that
any multiple kp also has finite order.

2. (a) For each of the following points p, q on the elliptic curve C : y2 = x3 + 17, compute p + q.

i. p = (−1, 4), q = (2,−5).
ii. p = (43, 282), q = (52,−375).

iii. p = (−2, 3), q = ( 19
25 , 522

125 )

(b) Use Nagell–Lutz to prove that none of the above points have finite order.

3. (a) Find the discriminant of the curve y2 = x3 − 2x + 1.

(b) Find all the rational points of finite order on y2 = x3 − 2x + 1.

4. Let C be the elliptic curve y2 = x3 − 43x + 166. The points p = (3, 8) and q = (−5, 6) form part
of the torsion collection of CQ. Find the full collection.
(Hint: this is hard if you work straight from the discriminant ∆ = −215 · 13 as there are lots of values
to check. Instead, show that 2p = −q, define r = −3p and show that 4p = r. What is the order of p?
What does Mazur’s theorem tell you about the torsion subgroup?)

5. If C is an elliptic curve in canonical form, show that there are exactly three points of order two
on the complexified curve CC. Hence show that there are either none, one or three rational
points of order 2.

6For technical reasons involving the primes 2 and 3, their canonical forms are sometimes a little different to ours, and
their discriminant is ours multiplied by 16.
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6. Any curve ‘birationally equivalent’ to an elliptic curve is also called elliptic. Given two curves
C1, C2 with polynomials f , g, this means that there exist rational functions φi, ψi (with rational
coefficients) for which

s = φ1(x, y), t = φ2(x, y), x = ψ1(s, t), y = ψ2(s, t)

gives a bijection between all but finitely many points on C1, C2.

(a) Check that Fermat’s curve x3 + y3 = 1 is birationally equivalent to the Weierstrass form
curve t2 = s3 − 432 via the transforms

s =
12

x + y
, t =

36(x− y)
x + y

, x =
6
s
+

t
6s

, y =
6
s
− t

6s

What points, if any, on C1, C2 are excluded from the bijection?

(b) Given that rational points must be mapped to rational points by a birational transforma-
tion, find all the rational points on the curve t2 = s3 − 432.

(Hint: How many rational points lie on Fermat’s curve?)

7. The discriminant of each of the (non-elliptic) curves C1 : y2 = x3 and C2 : y2 = x3 + x2 is zero.

(a) Graph these curves. Each has one singular point: what is it?

(b) Consider lines through the singular point p ∈ C1. Show that C1 contains infinitely many
rational points (indeed it has infinitely many integer points).

(c) It can be seen that (C1 \ {p},+, σ) is a group where σ = [0, 1, 0]. Define φ : C1
Q \ {p} → Q

by

φ(x, y) =
x
y

, φ(σ) = 0

Prove that φ is a bijection and that it maps inverses in C to inverses in (Q,+).

It can be shown that φ is a homomorphism and thus an isomorphism of groups.a Since (Q,+) is
not finitely generated, Mordell’s theorem does not hold for singular cubic curves. It can similarly
be shown that C2

Q \ {p} ∼= (Q×, ·) which is not finitely generated either!

aIf you want a challenge, prove this: try to show that any point (x, y) on the cubic has φ = x
y satisfying a cubic equation

with no quadratic term. What does this say about three collinear points p, q, p ∗ q on y2 = x3?
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7.5 Algebraic Curves Modulo a Prime

An algebraic curve with integer coefficients can be viewed as a ‘curve’ over the finite field Zp. This
isn’t really a curve in the traditional sense since there can only be finitely many points on Cp. This
also means that finding points relatively easy: just test all p2 possibilities!

Definition 7.29. Given an algebraic curve C : f (x, y) = 0 with integer coefficients, its reduction
modulo p is the set

Cp = {(x, y) ∈ Z2
p : f (x, y) = 0} (equivalently f (x, y) ≡ 0 (mod p))

The number of points on Cp is denoted Np, and the defect is ap := p− Np.

Example 7.30. The curve 2x + 4y = 1 over Z11 is plotted.
Observe that N11 − 11: conincidence? Since 4−1 = 3 modulo 11, we
can multiply by 3 to solve for y in terms of x:

2x + 4y = 1 ⇐⇒ 6x + y = 3 ⇐⇒ y = 3− 6x = 3 + 5x

The same thing happens modulo any prime except 2:

x = 2−1(1− 4y) =⇒ Np = p

Modulo 2, there are no solutions N2 = 0.

0

2

4

6

8

10
y

0 2 4 6 8 10
x

The example is easily generalized: if b 6= 0 in Zp, then ax + by = c ⇐⇒ y = b−1(c− ax).

Quadratic Curves A simple parabola such as y = x2 + 7x− 3 plainly has Np = p since y is given as
a function of x. However, things are not always so clear-cut.
Consider the curve C : y2 − 5x2 = 1 over Zp. Here are the solutions for the first few primes.

p Solutions (x, y) Np ap
2 (1, 0), (0, 1) 2 0
3 (0, 1), (0, 2), (1, 0), (2, 0) 4 −1
5 (x, 1), (x, 4), ∀x 10 −5
7 (±2, 0), (0,±1), (3,±2), (4,±2) 8 −1

11 10 1
13 14 −1
17 18 −1
19 18 1
23 24 −1
29 28 1
31 30 1
37 38 −1
41 40 1
997 998 −1

0

10

20

30

40

0 10 20 30 40
Points on y2 − 5x2 modulo 41

Once we get past p = 5, there seems to be a pattern: think about each prime modulo 5. . .
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To establish the pattern we count Np similarly to how we parametrized rational points on real
quadratics, by intersecting lines with Cp.

Suppose p 6= 2, 5. Start with the base point Q := (0, 1) which lies in Cp independently of p. For each
m ∈ Zp, intersect Cp with the line y = mx + 1 through Q to obtain

0 = (m2 − 5)x2 + 2mx + 1− 1 = x
[
(m2 − 5)x + 2m

]
(∗)

Since p is prime, there are at most two solutions to this equation and thus at most two intersections:

1. x = 0 corresponds to the base point Q = (0, 1) and the ‘slope’ m = 0;

2. m2 6= 5 =⇒ (x, y) =
(

2m
5−m2 , 5+m2

5−m2

)
∈ Cp where 1

5−m2 := (5−m2)−1 ∈ Zp.

Conversely, if a 6= 0, then the line joining Q and (a, b) ∈ Cp has slope m = a−1(b− 1) ∈ Zp:

a(y− 1) = (b− 1)x! y = a−1(b− 1)x + 1

The only point missing from this construction is (0, p − 1), which corresponds to a ‘vertical’ line
through Q.
Putting everything together, we count the number of points Np:

• In addition to (0, p− 1), each m ∈ Zp generates a point (x, y) ∈ Cp, for a base count of p + 1.

• If 5 is a quadratic residue modulo p, then there are two solutions (±m) to m2 = 5 ∈ Zp: for
these m we cannot define (5−m2)−1 and so our count rduces to p− 1. By quadratic reciprocity(

5
p

)
=
( p

5

)
=

{
1 if p ≡ ±1 (mod 5)
−1 if p ≡ ±2 (mod 5)

In conclusion: if p 6= 2, 5 is prime, then the curve y2 − 5x2 = 1 modulo p has Np points, where

Np =

{
p− 1 if p ≡ ±1 (mod 5)
p + 1 if p ≡ ±2 (mod 5)

(
equivalently ap =

{
1 if p ≡ ±1 (mod 5)
−1 if p ≡ ±2 (mod 5)

)

Our analysis fails in Z2 and Z5. Here is why:

• If p = 2, then (0, p− 1) = (0, 1) is not a new point. Moreover (∗) degenerates to (m2− 1)x2 = 0.

• If p = 5, then (∗) becomes mx(mx + 2) = 0. Choosing m = 0 results in five points!

A little more is going on: modulo these primes, the ‘curves’ become singular:

∇(Y2 − 5X2 − Z2) =
( −10X

2Y
−2Z

)
= 0 ⇐⇒ 10X = 0 = 2Y = −2Z

Modulo 2, all points are singular. Modulo 5, the ideal point [1, 0, 0] is singular. Relatedly, both curves
factorize:

y2 − 5x2 ≡ 1 (mod 2) =⇒ (x + y + 1)2 ≡ 0 (mod 2)

y2 − 5x2 ≡ 1 (mod 5) =⇒ (y + 1)(y− 1) ≡ 0 (mod 5)

The primes p = 2, 5 are known as primes of bad reduction, or simply bad primes. It should be clear that
modulo every other prime, the curve Cp is non-singular.
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Elliptic curves and reductions modulo p

We could continue to play with quadratic curves, but the above example is somewhat generic. Elliptic
curves are more interesting. To keep things simple, we’ll work only with elliptic curves in monic
canonical form y2 = g(x) = x3 + bx2 + cx + d where b, c, d ∈ Z.

Definition 7.31. A prime of bad reduction is a prime p such that y2 = g(x) is singular modulo p. We
take this to mean that the curve contains at least one point Q = (x0, y0) ∈ Z2

p for which

∇ f (Q) =

(−g′(x0)
2y0

)
= 0 (†)

Alternatively, p is a good prime if C remains an elliptic curve over the finite field Zp. The construction
of P + Q survives the reduction: by Lemma 7.21, if P, Q are integer points, so also is P + Q. It follows
that Cp, when combined with σ = [0, 1, 0], is a finite abelian group. Here is the key result.

Theorem 7.32. p is a bad prime if and only if p = 2 or p | ∆.

Proof (sketch). Suppose y2 = x3 + cx + d is in Weierstraß form and let Q = (x0, y0) ∈ Cp. If p = 2,
then (†) says that Q is singular if and only if

g′(x0) = −3x2
0 − c = x2

0 − c = 0 ∈ Z2

Q = (c, g(c)) is easily checked to be a singular point on the curve.
Now assume p ≥ 3. The rest of the proof follows from two easily verifiable polynomial identities:

1. ∆ = −4c3 − 27d2 = (18cx− 27d)g(x) + (−18cx2 + 9dx− 4c2)g′(x)

2. 4c3g(x) = (2cx + 3d)2(cx− 3d)− ∆(cx + d)

If Q is singular, then ∇ f (Q) = 0 =⇒ p | g′(x0) and p | 2y0 from which p | y0. But then p | g(x0)
and identity 1 tells us that p | ∆.
Now suppose p | ∆. Identity 2 says that 4c3g(x) = (2cx + 3d)2(cx− 3d) in Zp. There are two cases:

• If p - c, then g(x) = (4c3)−1(2cx + 3d)2(cx − 3d) =⇒ g(x) = 0 has a repeated root x0 =
−(2c)−1(3d) ∈ Zp. But then (Exercise 7.3.6) g′(x0) = 0 and we conclude that (x0, 0) is singular.

• If p | c, then g(x) = x3 + d and ∆ = −27d3 modulo p, from which p = 3 or p | d. Note that

∇ f =

(−3x2

2y

)
∈ Z2

p

If p = 3, then x3 = x for all x and so (−d, 0) is a singular point on the curve. If p > 3 and p | d,
then (0, 0) is singular.

In a proof for non-Weierstraß curves, the main difference is that the polynomial identities are uglier.
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Examples 7.33. 1. The curve y2 = x3 + 1 = g(x) has ∆ = −27 with bad primes p = 2 and 3.
Computing ∇(y2 − x3 − 1) =

(
−3x2

2y

)
, we see that following points are singular:

• p = 2: (x, y) = (c, g(c)) = (0, 1);

• p = 3: (x, y) = (−d, 0) = (2, 0). Since y2 = x3 + 1 = (x + 1)(x2 − x + 1) = (x + 1)3 over
Z3, the singular curve has a cusp.

2. y2 = x3 − x − 6 = (x − 2)(x2 + 2x + 3) has ∆ = −4(−1)3 − 27(−6)2 = −968 = −23 · 11.
Computing ∇(y2 − x3 − 1) =

(
−3x2+1

2y

)
, we find the following singular points:

• p = 2: (x, y) = (c, g(c)) = (1,−6) = (1, 0);

• p = 11: Over Z11 the curve has a double point y2 = (x− 2)2(x + 4): this corresponds to
the proof in that we have a repeated root for g(x) = 0 at

x0 = −(2c)−1(3d) = −(−2)−1(−18) = 2−1 · 4 = 2 ∈ Z11

Elliptic Curve Cryptography (non-examinable)

Before considering the number of points on a curve modulo p, here is an easy to follow application.

Alice wishes to send a secret message to Bob. They start by agreeing on a point P on an elliptic curve
C with ‘good’ prime q. In practice this is public information: software implementing the algorithm
will often select a suitable curve from a database such as that maintained by NIST (e.g. pg. 89).

1. Bob chooses an integer b, computes the point B = bP ∈ Cq and sends B to Alice (B is public).

2. Alice selects a message to encode, say a point M ∈ Cq, and a random integer k. She computes

A1 = kP A2 = M + kB

and sends these points to Bob.

3. Bob recovers the message M by computing

A2 − bA1 = M + kB− bkP = M + k(B− bP) = M

This is the ElGamal cryptosystem for elliptic curves. Its security is based on the fact that two calcula-
tions have very different levels of difficulty:

1. It is very quick to compute addition on elliptic curves (A1 = kP, etc.) by computer.

2. It is very hard, given the public information P and B, to efficiently compute Bob’s secret key b,
without which the message cannot be decoded.

This second is the elliptic curve discrete logarithm problem. It is believed to be harder to solve (in terms
of computing time) than the standard discrete logarithm problem.7 This fact allows one to obtain
a similar level of security using key sizes which are significantly smaller than those used for RSA,
with an appreciable increase in computing speed. If you’re into computing, try to write a program
implementing this: remember that straightforward expressions exist for addition on elliptic curves
(e.g. Exercise 7.3.5).

7We discussed the ‘standard’ DLP when considering primitive roots: compute b given P, B ∈ Zq satisfying B = Pb.
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Modularity Patterns

We finish by considering the number of points Np on Cp, and the defect ap = p− Np. There are many
patterns here, though they are typically much more complicated than those for conics.

Examples 7.34. 1. The curve y2 = x3 + 1 has discriminant ∆ = −27, whence the bad primes are
p = 2 and 3. Here are the numbers of points and their defects for several small primes:

p Solutions (x, y) Np ap
2 (0, 1), (1, 0) 2 0
3 (0,±1), (2, 0) 3 0
5 (0,±1), (2,±2), (4, 0) 5 0
7 11 −4
11 11 0
13 11 2
17 17 0
19 27 8
23 23 0
29 0 0
31 35 −4
37 47 −10

0

10

20

30

0 10 20 30
y2 = x3 + 1 modulo 37

An obvious pattern is that (for good primes) ap = 0 unless p ≡ 1 modulo 6. This is tricky to
prove, though it is related to the amazing fact that ap is the pth coefficient of the series

q
∞

∏
n=1

(1− q6n)4 = q− 4q7 + 2q13 + 8q19 − 5q25 − 4q31 − 10q37 + · · ·

2. The curve y2 = x3 − x has discriminant ∆ = 4 and the only bad prime is p = 2.

p Solutions (x, y) Np ap
2 (0, 0), (1, 0) 2 0
3 (0, 0), (1, 0), (2, 0) 3 0
5 (0, 0), (±1, 0), (2,±2), (3,±2) 7 −2
7 (0, 0), (±1, 0), (4,±2), (5,±1) 7 0

11 11 0
13 7 6
17 15 2
19 19 0
23 23 0
29 39 −10
31 31 0
37 39 −2

0

10

20

30

0 10 20 30
y2 = x3 − x modulo 37

This time it appears that ap = 0 unless p ≡ 1 modulo 4, which is again related to a special series

q
∞

∏
n=1

(1− q4n)2(1− q8n)2 = q− 2q5 − 3q9 + 6q13 + 2q17 − q25 − 10q29 − 2q37 + 10q41 + · · ·
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If you have currently have any inkling why these patterns exist, or why such series should have
anything to do with the original elliptic curve, then your mathematical intuition is of genius calibre!

One can play the above game with any elliptic curve, though finding such a compact way of writing
the series as an infinite product is not always possible. Since the elliptic curve determines only the
prime coefficients ap, we need a general method for constructing the entire series: here it is.

1. For an elliptic curve in ‘minimal Weierstraß form’8 compute the discriminant ∆ and the p-
defects ap for each prime.

2. Whenever n is not prime, define the rest of the sequence by:
a1 = 1 if n = 1
apk = (ap)k if p is a prime dividing ∆
apk+1 = apapk − papk−1 if p is a prime and p - ∆
amn = aman if gcd(m, n) = 1

3. Define a Fourier series over the complex numbers

f (z) =
∞

∑
n=1

anqn where q = e2πiz

The Modularity Theorem states that this series is a modular form, meaning that it transforms in a
special way under the action of a particular subgroup of the modular group. Specifically: there
exists a positive integer N | ∆ such that for all complex numbers z = x + iy with y > 0, and for all
a, b, c, d ∈ Z such that ad− bc = 1 and N | c we have

f
(

az + b
cz + d

)
= (cz + d)2 f (z)

This is part of what Andrew Wiles proved for all semistable elliptic curves (roughly curves whose
reductions modulo bad primes only have double points and not cusps), which in turn was enough
to establish Fermat’s Last Theorem.

8Every elliptic curve over Q is ‘birationally equivalent’ to some curve of the form y2 + αxy + βy = x3 + γx2 + δx + ε
for which a suitably defined discriminant is minimal. Every elliptic curve of the form y2 = x3 + ax2 + bx + c considered
in these notes is already minimal. The correct discriminant for these curves is 16 times ours, thus forcing 2 | ∆ for any
canonical form elliptic curve.
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Exercises 1. Factorize y2 = x3 − 2x + 1 = (x− 1)(x2 + x− 1). This holds modulo any prime p.

(a) Check that x = 1 is not a solution to x2 + x− 1 = 0 in Zp for any prime p.

(b) Prove that x2 + x− 1 = 0 has a repeated root in Zp if and only if p = 5.
(Hint: multiply out (x− µ)2 = x2 + x− 1. What conditions must µ satisfy?)

(c) Find all the points on the curve modulo p = 2, 3, 5 and 7. Show that there are no singular
points when p = 3 and 7, and find the singularities when p = 2 and 5.

This should convince you that the only bad primes for the curve are p = 2 and 5.

2. (a) Prove that if either a or b is non-zero modulo p, then ax + by = c has Np = p (equiv.
ap = 0).

(b) What happens if a = b = 0 ∈ Zp?

(c) Suppose n is composist and that a, b are units in Zn. What is Nn?

(d) How many points are there on the curve 2x + 4y = 6 over Z10 and how does this relate to
the modulus?

3. For each elliptic curve, find the discriminant and the primes of bad reduction. When p 6= 2 is a
bad prime find the singular point(s) on Cp and identify their type (double point or cusp).

(a) y2 = x3 − 2x + 1

(b) y2 = x3 − 5x + 4

4. The curve C : 5x2 − y2 + x + 1 = 0 contains the point (0, 1).

(a) Find all the points on C2, the reduction of the curve modulo 2.

(b) By considering 92(x + 2)2 modulo 19, obtain a factorization of C into two lines. Compute
the number of points N19 on C19 and the defect a19 = 19− N19.

(c) Suppose that p 6= 2, 19 is prime. Prove that the ‘line’ y = mx + 1 intersects Cp at a second
point if and only if m2 6= 5 ∈ Zp. What are the co-ordinates of the new point?

(d) If p 6= 2, 5, 19 is prime, prove that the defect is given by

ap =

(
5
p

)
=

{
1 if 5 is a quadratic residue modulo p
−1 if 5 is a quadratic non-residue modulo p

What happens if p = 5?
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