§2.1 Tangent line picture

secant line approximates tangent line at \(x = a \) if \(h \) is small.

Gradient of secant line:

\[
\frac{f(a+h) - f(a)}{h}
\]

Velocity: If \(d = f(t) \) is the distance traveled by a particle (meters) at time \(t \) (sec), then the tangent line has slope = velocity of particle. (Unit = m/sec)

§2.2 Limits picture

\[
\lim_{x \to a^-} f(x) = L^-
\]

\[
\lim_{x \to a^+} f(x) = L^+
\]

Here \(\lim_{x \to a} f(x) = \text{DNE} \)

Feed in values of \(x < a \), getting closer to a to find:

\[
\lim_{x \to a^-} f(x)
\]

Feed in values of \(x > a \), getting closer to a to find:

\[
\lim_{x \to a^+} f(x)
\]

\[\text{Then } \lim_{x \to a} f(x) = L \iff \lim_{x \to a^-} f(x) = L \text{ and } \lim_{x \to a^+} f(x) = L\]
- Vertical asymptote: \(x = a \) if any of these limits
 \[
 \lim_{x \to a^-} f(x), \lim_{x \to a^+} f(x), \lim_{x \to a} f(x)
 \]
 are \(\infty \) or \(-\infty \).

 e.g. \(f(x) \)

 \[
 \lim_{x \to a^-} f(x) = L
 \]
 \[
 \lim_{x \to a^+} f(x) = \infty
 \]
 so \(x = a \) is vertical asymptote.

\[\text{§2.3 Limit laws: Suppose } \lim_{x \to a} f(x) = L \text{ and } \lim_{x \to a} g(x) = M. \text{ Then}
\]
\[
\lim_{x \to a} (f(x) \pm g(x)) = L \pm M, \quad \lim_{x \to a} f(x)g(x) = LM
\]
\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M} \quad \text{if } M \neq 0, \quad \lim_{x \to a} x^n = a^n, \quad \lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a} = a^{\frac{1}{n}}.
\]

Rational functions: e.g. \(\lim_{x \to 2^+} \frac{x^3 - 3x + 2}{x^2 - 4x + 4} = ? \)

Rationalizing/conjugate method: e.g. \(\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} = \frac{4}{5} \).

Squeeze Theorem: Suppose \(f(x) \leq g(x) \leq h(x) \) except perhaps at \(x = a \)

 and suppose \(\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x) \).

 Then \(\lim_{x \to a} g(x) = L \).
§2.5 Continuity: \(f \) is continuous at \(x = a \) \(\iff \lim_{x \to a} f(x) = f(a) \)

- Not continuous at \(x = a \):
 - \(\lim_{x \to a} f(x) = \text{DNE} \)
 - \(f(a) = \text{DNE} \)
 - \(\lim_{x \to a} f(x) \neq f(a) \)

At every point of their domains, polynomials, rational functions, powers, roots, exponentials, trigonometric functions, etc., are all continuous.

Compositions \((f \circ g)\) and inverses \((f^{-1})\) of continuous functions are continuous.

Intermediate Value Theorem:

Let \(f \) be continuous on \([a, b]\). If \(L \) is between \(f(a) \) and \(f(b) \), then there is at least one \(c \in (a, b) \) such that \(f(c) = L \).

- Show a root exists:
 - e.g. \(x^3 + \cos x = 0 \) has a solution \(x \in (-1, 0) \)
- Word problems...

§2.6 Horizontal asymptotes

- \(e^x \) and \(e^{-x} \)
- \(\tan^{-1} x \)
- Rational functions:
 - e.g. \(\frac{x^3 + 3x + 1}{(2x + 1)(3x + 1)} x \to \infty \) \(\to \frac{1}{6} \)
Dealing with roots:
\[n\sqrt[2]{x} = \begin{cases} x & \text{if odd} \\ 1x1 & \text{if even} \end{cases} \]
i.e. \[n\sqrt[2]{(-2)^2} = 2. \]

So
\[
\lim_{x \to -\infty} \frac{n\sqrt{x^2 + 7} + 2}{x - 1} = \frac{1x1 \sqrt{1 + \frac{7}{x^2}} + 2}{x - 1}
\]
\[
= \lim_{x \to -\infty} \frac{\sqrt{1 + \frac{7}{x^2}} + \frac{2}{1x1}}{\frac{x}{1x1} - \frac{1}{1x1}} = \lim_{x \to -\infty} \frac{\sqrt{1 + \frac{7}{x^2}} + \frac{2}{1x1}}{-1 - \frac{1}{1x1}}
\]

Since \[1x1 = -x \text{ when } x < 0, \]
\[\therefore \lim = \frac{1 + 0}{-1 - 0} = -1. \]

2.7 Derivative of \(f(x) \):
\[
f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x-a},
\]
if limit exists.

Velocity:
\[S'(a) \]
Average velocity over \(a \leq t \leq b \):
\[\bar{v} = \frac{S(b) - S(a)}{b - a} \]
Leibniz notation: $\frac{df}{dx} = f'(x)$.

- Examples computing derivatives directly from limit definition.

2.8 As a function $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$, whenever limit exists.

Visual differentiation:

Visual differentiation:

Then if f is differentiable at $x=a$ then it is continuous at $x=a$.

How can a function fail to be differentiable?

1. If not continuous, or,
2. If $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \text{DNE or } \pm \infty$
Higher derivatives: \[f''(x) = \frac{d^2f}{dx^2}, \quad f'''(x) = \frac{d^3f}{dx^3}, \quad f^{(n)}(x) = \frac{d^nf}{dx^n} \]

Alternate notation: \[\frac{d^2f}{dx^2} = \frac{d}{dx} \left(\frac{df}{dx} \right) \] helps with units.

e.g. if \(f \) has units meters & \(x \) units of seconds,
then \[\frac{df}{dx} = f'(x) \text{ has units m/s, (speed)} \]
\[\frac{d^2f}{dx^2} = f''(x) \text{ has units m/s}^2 \text{ (acceleration)} \]
\[\frac{d^3f}{dx^3} = f'''(x) \text{ has units m/s}^3 \text{ "metersper second cubed"} \]

* Compute \(f'(x) \) and \(f''(x) \) for \(f(x) = |x| x = \begin{cases} x^2 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -x^2 & \text{if } x < 0 \end{cases} \)

Should find: \(f'(x) = 2|x| = \begin{cases} 2x & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -2x & \text{if } x < 0 \end{cases} \)

and \(f''(x) = \begin{cases} 2 & \text{if } x > 0 \\ -2 & \text{if } x < 0 \end{cases} \)

Check: \[\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \text{DNE} \text{, so } f''(0) \text{ does not exist!} \]