§3.1 Power law if \(n \) is constant, then \(\frac{d}{dn} x^n = n x^{n-1} \).

Linearity if \(a, b \) constant, then \(\frac{d}{dn} (a f(x) + b g(x)) = a f'(x) + b g'(x) \).

\(\Rightarrow \) Can differentiate any polynomial.

Exponentials \(\lim_{h \to 0} \frac{e^{h} - 1}{h} = 1 \Rightarrow \frac{d}{dn} e^x = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x \).

§3.2 Product Rule \(\frac{d}{dx} (f(x)g(x)) = f'(x)g(x) + f(x)g'(x) \)

or \((uv)' = u'v + uv' \).

Quotient Rule \(\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} \)

or \(\left(\frac{u}{v} \right)' = \frac{u'v - uv'}{v^2} \).

§3.3 In radians, arc length of a circle radius 1 equals angle.

\[\frac{1}{\sinh h} \]

\(\cosh < \sinh < h \) (height small \(\Delta < \text{arc} \))

and \(\frac{h}{2\pi} \leq \frac{1}{2} \tanh \) (area segment < area \(\Delta \))

Rearrange: \(\cosh < \frac{\sinh}{h} < 1 \)

\(h \to 0 \)

\(\frac{h}{1} \)

So \(\lim_{h \to 0} \frac{\sinh}{h} = 1 \) by Squeeze theorem.

Use to compute \(\frac{d}{dn} \sin x = \cos x \).
\[\lim_{n \to 0} \frac{\sin^3 n}{3n} = 1 \text{ etc.} \quad \lim_{n \to 0} \frac{\sin 2n}{3n} = \lim_{n \to 0} \frac{\sin 2n - 4n + 2n}{2n \sin 4n} \cdot \lim_{n \to 0} \frac{2n}{\sin 4n} \cdot \lim_{n \to 0} \frac{2n}{n} = 1 \cdot 1 \cdot \frac{2}{4} = \frac{1}{2}. \]

Other trig functions:
\[\frac{d}{dx} \cos x = -\sin x. \]
\[\frac{d}{dx} \tan x = \frac{d}{dx} \frac{\sin x}{\cos x} = \sec^2 x \]
\[\frac{d}{dx} \sec x = \frac{d}{dx} \frac{1}{\cos x} = \sec x \tan x \]
\[\frac{d}{dx} \csc x = \frac{d}{dx} \frac{1}{\sin x} = -\csc x \cot x \]
\[\frac{d}{dx} \cot x = \frac{d}{dx} \frac{1}{\tan x} = -\frac{d}{dx} \cos x = -\csc^2 x \]

\[\frac{d}{dx} \] 3.4 Chain rule: \[\frac{d}{dx} f(g(x)) = \frac{d}{dx} f(g(x)) \cdot g'(x) \]

or \[\frac{d}{dx} \left(f(g(x)) \right) = \frac{df}{dx} \cdot \frac{dg}{dx}. \]

Derivatives of: \(\sin x, \cos x, \text{ etc.} \)
\(e^x, \alpha^x = e^x \ln \alpha \)

3.5 Implicit diff: \[\frac{d}{dx} f(y) = f'(y) \cdot \frac{dy}{dx}, \]

E.g. \[\frac{d}{dx} (xy^2) = 1 \cdot y^2 + x \cdot \frac{d}{dx} y^2 \quad (\text{Product Rule}) \]
\[= y^2 + x \cdot 2y \cdot \frac{dy}{dx} \quad (\text{Implicit diff/Chain rule}) \]

Use to find slope \(\frac{dy}{dx} \) of implicit curves, e.g. \(xy^2 = 3 \cos(xy) \).

* Diff both sides with respect to \(x \), and solve for \(\frac{dy}{dx} \).
Inverse functions: \[y = f^{-1}(x) \iff f(y) = x \] \[\Rightarrow \frac{d}{dx} f(y) = \frac{d}{dx} x \] \[\Rightarrow f'(y) \frac{dy}{dx} = 1 \] \[\Rightarrow \frac{dy}{dx} = \frac{1}{f'(y)} = \frac{1}{f'(f^{-1}(x))} \]

Apply to \(y = \sin^{-1}x, \cos^{-1}x, \tan^{-1}x, \) etc.

\[\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}, \frac{-1}{\sqrt{1-x^2}}, \frac{1}{1+x^2}, \text{etc...} \]

§3.6 \[\frac{d}{dn} \ln u = \frac{1}{u} = u^{-1} \] (Inverse function of \(e^u \))

Generally: \[\frac{d}{dn} \log_a x = \frac{d}{dn} \frac{\ln x}{\ln a} = \frac{1}{u \ln a} \]

Logarithmic differentiation: \[\frac{d}{dn} (\ln f(x)) = \frac{f'(x)}{f(x)} \Rightarrow f'(x) = f(x) \frac{d}{dn} (\ln f(x)) \]

Useful when \(\ln f(x) \) is simpler than \(f(x) \).

\(\text{Ex:} \) If \(f(x) = e^{\tan x \cdot x^3} \), then \(\ln f(x) = \tan x \cdot x^3 \),

so \[\frac{d}{dn} \ln f(x) = \frac{d}{dn} (\tan x \cdot x^3) \]

\[\Rightarrow \frac{d}{dn} f(x) = e^{\tan x \cdot x^3} \left[\tan x \cdot 3x^2 + x^3 \sec^2 x \right] \]

Apply to: \(f(x) = x^x, x^\sin x, \frac{\sqrt{3x^2 + 1}}{(4x+1)^3 (7x-1)^5}, \text{etc...} \)
\[e \text{ as a limit: } e^n = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n \]

or \[e = \lim_{n \to 0} (1 + x)^{\frac{1}{n}}. \]

3.8 Natural growth \((k > 0)\) / decay \((k < 0)\) equation:

\[
\frac{dy}{dx} = ky. \quad \text{Solution: } y(x) = y(0) \cdot e^{kx}.
\]

Rate of change of quantity \(y\) proportional to size of \(y\).

E.g. Population growth, rate of spread of disease, half-life/radiation, continuously compounded interest.

Cooling (Newton)

\[
\frac{dT}{dt} = -k(T - T_s), \quad k > 0 \text{ constant } \quad T_s = \text{surrounding temp}.
\]

Rate of change of temp proportional to difference between temp and that of surroundings...

Solution: \[T(t) = T_s + (T(0) - T_s)e^{-kt} \]

\[T(t) \uparrow \]

\[T(0) \]

\[T_s \]
3.9. Related Rates: Word problems for Chain Rule or Implicit Differentiation.

- Draw picture.
- Choose variables.
- List everything in the question in terms of your variables.
- Differentiate.
- Solve for the desired quantity and interpret solution in context of the question.

3.10. Tangent line equation

\[y = f(a) + f'(a) (x-a) \]

For \(x \) close to \(a \), \(f(x) \approx f(a) + f'(a) (x-a) \).

Function approximated by its tangent line.

Notation: \(L_a(x) = f(a) + f'(a) (x-a) \).
Linear approximation at \(a \).

Use: Approximate roots, e.g. \(\sqrt{4.2} = \sqrt{4 + \frac{1}{5}} \),

so \(f(4 + \frac{1}{5}) = f(4) + f'(4) (4 \cdot \frac{1}{5} - 4) \)

\[= f(4) + \frac{1}{5} f'(4), \]

where \(f(x) = \sqrt{x} \).

Differentials: \(y = f(x) \Rightarrow dy = f'(x) dx \)
\[dy = f'(x) \, dx. \]

\[\uparrow \quad \uparrow \]

\[\text{small change in } x \quad \text{leads to...} \]

\[\text{small change in } y \]

Eg. If \[y = 17x^2 + 3x - 1 \], and \[dx = \frac{1}{2} \] at \[x = 1 \],
then the resulting small change in \(y \) is approximately
\[dy = (34x + 3) \, dx \]
\[= (34 \cdot 1 + 3) \frac{1}{2} = \frac{37}{2}. \]