1.2 Mathematical Models: a catalogue of essential functions

Should be familiar with the following types of functions.
Linear Graphs are straight lines. Equations $y=m x+c$ where m is the gradient and c the y intercept.

Power Equations of the form $f(x)=x^{a}$, where a is a constant. If a is an even/odd integer, so is the function f. If a is a fraction, then the power function contains a root. For example

$$
f(x)=x^{7 / 4}=(\sqrt[4]{x})^{7}=\sqrt[4]{x^{7}}
$$

Polynomial Equations of the form $p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$. The degree is the highest power (e.g. n). The constants a_{k} are the coefficients. Examples include quadratic, cubic, quartic functions.

Rational Equations of the form $f(x)=\frac{p(x)}{q(x)}$ where both p and q are polynomials.
Algebraic (In this class) Functions whose formula is built entirely from the basic algebraic operations: adding, subtracting, multiplying, dividing, raising to (fractional) powers. For example

$$
f(x)=\frac{17 x^{3 / 2}-\sqrt{1+3 x^{4}}}{19 x^{3}(x+7)^{13 / 8}}
$$

Trigonometric Sine, Cosine, Tangent, Secant, Cosecant, Cotangent and their combinations. You should know the graphs and special values of the first three, and be able to compute/graph the co-functions from their definitions:

$$
\sec x=\frac{1}{\cos x}, \quad \csc x=\frac{1}{\sin x}, \quad \cot x=\frac{1}{\tan x}=\frac{\cos x}{\sin x}
$$

You should also know the basic identities.

- $\sin ^{2} x+\cos ^{2} x=1$ and the \tan / sec and \cot / \csc equivalents.
- Double angle formulæ for $\sin 2 x$ and $\cos 2 x$.
- Multiple angle formulæ for $\sin (x \pm y)$ and $\cos (x \pm y)$.

Exponential and logarithmic functions will be dealt with later.

Homework

1. Give a example formula for an algebraic function which is always positive, and has domain $[2,6) \cup(6,10]$. There are many possible answers.
2. Let m, n be positive integers with no common factors and let $f(x)=x^{m / n}$.
(a) What is the domain of f ? Your answer should depend on n.
(b) Find all combinations of m, n for which f is an even function. Prove your assertion.
(c) Repeat part (b) for when f is odd.
