2 Limits and Derivatives

2.1 The Tangent and Velocity Problems

Instantaneous Velocity Differential Calculus was partly motivated by the idea of finding the instantaneous velocity of an object.

Let s(t) measure the displacement (in meters) of a particle after *t* seconds.

Definition. The average velocity of the particle between times t = a and t = a + h seconds is

$$v_{av} = rac{\text{Distance}}{\text{Time}} = rac{s(a+h) - s(a)}{h}$$
 m/s

 $v_{\rm av}$ is the *gradient* of the green line.

If we compute the average velocity over smaller and smaller time intervals *h*, the average velocity should get closer to the *instantaneous velocity* of the particle at t = a

The green line is called a *secant* (cutting) line. As *h* becomes smaller, the secant line will get closer to being *tangent* (touching) to the curve at t = a. The instantaneous velocity is therefore the gradient of the tangent line.

Tangents How do we find the tangent line to a curve at a given point?

- To find the equation of a line, we need its *gradient*, and a point on the line. The point is given, so we just need the gradient.
- Approximate the tangent line by drawing secant lines and computing their gradients.
- The gradients of the secant lines will (hopefully!) approach some value as the secant lines are made to better approximate the tangent line.

Example Draw secant lines to find the gradient at $x = \frac{1}{2}$ of the graph of $f(x) = x^3 - 3x^2 + 2x$

The gradient of the secant line is

$$m_x = \frac{f(x) - f(\frac{1}{2})}{x - \frac{1}{2}}$$

Measuring over smaller and smaller intervals $\left[\frac{1}{2}, x\right]$, the gradient seems to approach $-\frac{1}{4}$

If this approach is legitimate, then the tangent line has gradient $-\frac{1}{4}$ and passes through the point

 $(\frac{1}{2}, f(\frac{1}{2})) = (\frac{1}{2}, \frac{3}{8})$. Its equation is therefore

$$y - \frac{3}{8} = -\frac{1}{4}\left(x - \frac{1}{2}\right) \iff y = -\frac{1}{4}x + \frac{1}{2}$$

To get any further, we need to formalize the limiting process.

Homework

1. Suppose that, after *t* seconds, a particle has displacement $s(t) = 7t - 3t^2$ meters. Show that the average velocity over the time interval [2, 2 + h] is

 $v_{\rm av} = -5 - 3h \,\mathrm{m/s}$

Therefore compute the velocity of the particle at time t = 2.

2. Find the equation of the tangent line to $y = 7x - 3x^2$ at x = 1.