2.2 The Limit of a Function

The vague notion of approximating gradients and velocities has a precise mathematical description and terminology.

Definition. *Let a be a constant real number. Suppose that f is a function defined* nearby *a, but not necessarily* at *a. That is, for some small quantity h, the domain of f includes the set*

 $(a-h,a) \cup (a,a+h)$

Now suppose that we can force f(x) to be arbitrarily close to some value L simply by requiring x to be sufficiently close to a. In such a case we say that L is the limit of f as x approaches a and write

$$\lim_{x \to a} f(x) = L$$

The strict definition of limit makes the concept of 'arbitrarily close' explicit. This level of detail is beyond the scope of this course.

Definition. Let a be constant and suppose that f is defined near x = a. We say that $\lim_{x \to a} f(x) = L$ if: For any given $\varepsilon > 0$, there is some distance $\delta > 0$ for which any x closer to a than δ satisfies $|f(x) - L| < \varepsilon$.

This discussion will be returned to in an upper-division Analysis course.

Indeterminate Forms The definition is most useful when an attempt to calculate f(a) results in an *indeterminate form* such as $\frac{0}{0}$.

Example Find
$$\lim_{x \to 2} f(x)$$
 when $f(x) = \frac{x^2 - 4}{x - 2}$

Evaluating directly yields the meaningless expression $\frac{0}{0}$. Indeed the function is not defined when x = 0, its graph has a hole. Taking values of *x* close to 2 we obtain

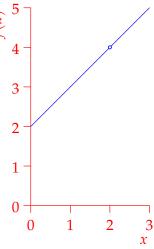
x	1	1.5	1.8	1.9	1.99	1.999
f(x)	3	3.5	3.8	3.9	3.99	3.999
x	3	2.5	2.2	2.1	2.01	2.001
f(x)	5	4.5	4.2	4.1	4.01	4.001

It seems reasonable to claim that $\lim_{x \to 2} f(x) = 4$.

In fact we can *prove* this assertion because the numerator is easy to factorize:

$$f(x) = \frac{(x-2)(x+2)}{x-2} = x+2$$

whenever $x \neq 2$. It follows that as *x* approaches 2, f(x) approaches 4.



A function with no limit Consider $f(x) = \frac{x^2 - 1}{x - 2}$ as *x* approaches 2. If we evaluate *f* at x = 2 we obtain the meaningless expression $\frac{3}{0}$.

Taking values of *x* close to 2 we instead find

x	1	1.5	1.8	1.9	1.99
f(x)	0	-2.5	-11.2	-26.1	-296.01
x	3	2.5	2.2	2.1	2.01
f(x)	8	10.5	8.55	34.1	304.01

It appears that the values of f(x):

increase decrease $\left. \begin{array}{c} \text{increase} \\ \text{decrease} \end{array} \right\}$ unboundedly as *x* approaches 2 from $\left\{ \begin{array}{c} \text{above} \\ \text{below} \end{array} \right.$

Since the values of f(x) are not getting closer to anything, we say that the limit of f at x = 2 *does not exist*. It is common to write

$$\lim_{x \to 2} f(x) = \mathsf{DNE}$$

One-sided Limits

If we only consider values of *x* which are *greater* than *a* then we obtain the concept of *limit from above*.

Definition. Suppose that the values f(x) get arbitrarily close to L whenever x approaches a and x > a: we say that L is the limit of f as x approaches a from above and write

$$\lim_{x \to a^+} f(x) = L$$

We similarly have the limit from below: $\lim_{x \to a^-} f(x) = L$

These are also known as *right-* and *left-sided* limits.

Theorem. $\lim_{x \to a} f(x) = L \iff \lim_{x \to a^+} f(x) = L \text{ and } \lim_{x \to a^-} f(x) = L.$

Infinite Limits and Asymptotes

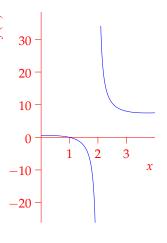
Definition. Suppose that the values f(x) get arbitrarily large whenever x approaches a: we write

$$\lim_{x\to a} f(x) = \infty$$

The negative limit $\lim_{x\to a} f(x) = -\infty$ and the one-sided limits $\lim_{x\to a^{\pm}} f(x) = \pm \infty$ are similar. If any of these limits are $\pm \infty$, we say that f has a vertical asymptote at x = a.

The function $f(x) = \frac{x^2-1}{x-2}$ discussed above has a vertical asymptote, since

$$\lim_{x \to 2^+} f(x) = \infty \quad \text{and} \quad \lim_{x \to 2^-} f(x) = -\infty$$



Examples

- 1. $f(x) = \frac{x-1}{2x^2+3x+1}$ has vertical asymptotes at x = -1 and $x = -\frac{1}{2}$ (factorize the denominator!)
- 2. $f(x) = \ln x$ has a vertical asymptote at x = 0. Indeed $\lim_{x \to 0^+} \ln x = -\infty$.
- 3. $f(x) = \tan x$ has a vertical asymptote at every half-multiple of $\frac{\pi}{2}$.

Piecewise Functions Piecewise functions often have different left and right limits.

Example Let $f(x) = \begin{cases} 1+x & x < 1 \\ 4-x^2 & x \ge 1 \end{cases}$ It is easy to convince yourself that

$$\lim_{x \to 1^{-}} f(x) = 2$$
, and $\lim_{x \to 1^{+}} f(x) = 3$.

Consequently $\lim_{x \to 1} f(x)$ does not exist.

The value f(1) = 3 is totally irrelevant, indeed the functions

$$g(x) = \begin{cases} 1+x & x \le 1\\ 4-x^2 & x > 1 \end{cases} \text{ and } h(x) = \begin{cases} 1+x & x < 1\\ 14 & x = 1\\ 4-x^2 & x > 1 \end{cases}$$

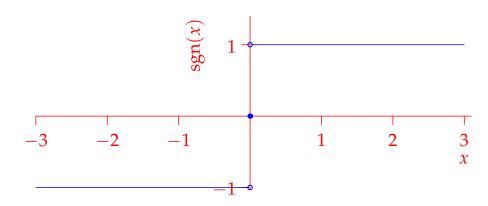
have identical left and right limits to those of f.

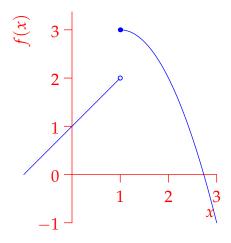
Three Famous Examples

1. The *Sign function* is defined by

$$sgn(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

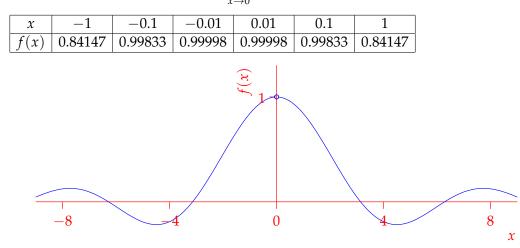
Clearly $\lim_{x\to 0^-} \operatorname{sgn}(x) = -1 \neq 1 = \lim_{x\to 0^+} \operatorname{sgn}(x)$ and so $\lim_{x\to 0} \operatorname{sgn}(x)$ does not exist.





2. Consider $f(x) = \frac{\sin x}{x}$ as *x* approaches 0.

Constructing a table of values suggests $\lim_{x\to 0} f(x) = 1$.



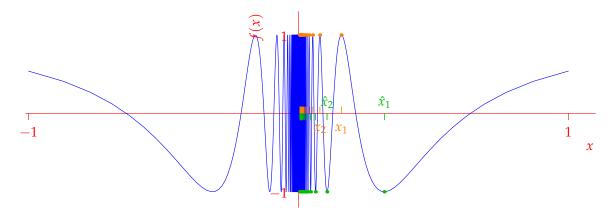
This limit is very important in Calculus: we will return to it later.

3. (Difficult) The function $f(x) = \cos\left(\frac{1}{x}\right)$ is undefined at x = 0.

The sequences $x_n = \frac{1}{2n\pi}$ and $\hat{x}_n = \frac{1}{(2n-1)\pi}$ where $n = 1, 2, 3, 4, 5, 6, \dots$, both approach x = 0 from above, and yet

 $f(x_n) = \cos(2n\pi) = 1$ and $f(\hat{x}_n) = \cos((2n-1)\pi) = -1$

The first sequence suggests $\lim_{x\to 0^+} f(x) = 1$, while the second suggests the limit is -1. *Neither* is true. The value of f(x) oscillates infinitely many times between $y = \pm 1$ before reaching x = 0. The values of f(x) do not get closer to anything, and so there is no limit at x = 0.



Homework

1. Find the vertical asymptotes of $f(x) = \frac{x-1}{2x^2 - x - 1}$. In particular, compute $\lim_{x \to 1} f(x)$ to show that *f* does not have a vertical asymptote at x = 1.