2.2 The Limit of a Function

The vague notion of approximating gradients and velocities has a precise mathematical description and terminology.

Definition. Let a be a constant real number. Suppose that f is a function defined nearby a, but not necessarily at a. That is, for some small quantity h, the domain of f includes the set

$$
(a-h, a) \cup(a, a+h)
$$

Now suppose that we can force $f(x)$ to be arbitrarily close to some value L simpky by requiring x to be sufficiently close to a. In such a case we say that L is the limit of f as x approaches a and write

$$
\lim _{x \rightarrow a} f(x)=L
$$

The strict definition of limit makes the concept of 'arbitrarily close' explicit. This level of detail is beyond the scope of this course.

Definition. Let a be constant and suppose that f is defined near $x=a$. We say that $\lim _{x \rightarrow a} f(x)=L$ if:
For any given $\varepsilon>0$, there is some distance $\delta>0$ for which any x closer to a than δ satisfies $|f(x)-L|<\varepsilon$.
This discussion will be returned to in an upper-division Analysis course.

Indeterminate Forms The definition is most useful when an attempt to calculate $f(a)$ results in an indeterminate form such as $\frac{0}{0}$.
Example Find $\lim _{x \rightarrow 2} f(x)$ when $f(x)=\frac{x^{2}-4}{x-2}$
Evaluating directly yields the meaningless expression $\frac{0}{0}$. Indeed the function is not defined when $x=0$, its graph has a hole.
Taking values of x close to 2 we obtain

x	1	1.5	1.8	1.9	1.99	1.999
$f(x)$	3	3.5	3.8	3.9	3.99	3.999
x	3	2.5	2.2	2.1	2.01	2.001
$f(x)$	5	4.5	4.2	4.1	4.01	4.001

It seems reasonable to claim that $\lim _{x \rightarrow 2} f(x)=4$.

In fact we can prove this assertion because the numerator is easy to factorize:

$$
f(x)=\frac{(x-2)(x+2)}{x-2}=x+2
$$

whenever $x \neq 2$. It follows that as x approaches $2, f(x)$ approaches 4 .

A function with no limit Consider $f(x)=\frac{x^{2}-1}{x-2}$ as x approaches 2 . If we evaluate f at $x=2$ we obtain the meaningless expression $\frac{3}{0}$.
Taking values of x close to 2 we instead find

x	1	1.5	1.8	1.9	1.99
$f(x)$	0	-2.5	-11.2	-26.1	-296.01
x	3	2.5	2.2	2.1	2.01
$f(x)$	8	10.5	8.55	34.1	304.01

It appears that the values of $f(x)$:

$\left.\begin{array}{l}\text { increase } \\ \text { decrease }\end{array}\right\}$ unboundedly as x approaches 2 from $\left\{\begin{array}{l}\text { above } \\ \text { below }\end{array}\right.$
Since the values of $f(x)$ are not getting closer to anything, we say that the limit of f at $x=2$ does not exist. It is common to write

$$
\lim _{x \rightarrow 2} f(x)=\mathrm{DNE}
$$

One-sided Limits

If we only consider values of x which are greater than a then we obtain the concept of limit from above.
Definition. Suppose that the values $f(x)$ get arbitrarily close to L whenever x approaches a and $x>a$: we say that L is the limit of f as x approaches a from above and write

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

We similarly have the limit from below: $\lim _{x \rightarrow a^{-}} f(x)=L$
These are also known as right- and left-sided limits.
Theorem. $\lim _{x \rightarrow a} f(x)=L \Longleftrightarrow \lim _{x \rightarrow a^{+}} f(x)=L$ and $\lim _{x \rightarrow a^{-}} f(x)=L$.

Infinite Limits and Asymptotes

Definition. Suppose that the values $f(x)$ get arbitrarily large whenever x approaches a : we write

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

The negative limit $\lim _{x \rightarrow a} f(x)=-\infty$ and the one-sided limits $\lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty$ are similar. If any of these limits are $\pm \infty$, we say that f has a vertical asymptote at $x=a$.

The function $f(x)=\frac{x^{2}-1}{x-2}$ discussed above has a vertical asymptote, since

$$
\lim _{x \rightarrow 2^{+}} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow 2^{-}} f(x)=-\infty
$$

Examples

1. $f(x)=\frac{x-1}{2 x^{2}+3 x+1}$ has vertical asymptotes at $x=-1$ and $x=-\frac{1}{2}$ (factorize the denominator!)
2. $f(x)=\ln x$ has a vertical asymptote at $x=0$. Indeed $\lim _{x \rightarrow 0^{+}} \ln x=-\infty$.
3. $f(x)=\tan x$ has a vertical asymptote at every half-multiple of $\frac{\pi}{2}$.

Piecewise Functions Piecewise functions often have different left and right limits.
Example Let $f(x)= \begin{cases}1+x & x<1 \\ 4-x^{2} & x \geq 1\end{cases}$
It is easy to convince yourself that

$$
\lim _{x \rightarrow 1^{-}} f(x)=2, \quad \text { and } \quad \lim _{x \rightarrow 1^{+}} f(x)=3
$$

Consequently $\lim _{x \rightarrow 1} f(x)$ does not exist.
The value $f(1)=3$ is totally irrelevant, indeed the functions

$$
g(x)=\left\{\begin{array}{ll}
1+x & x \leq 1 \\
4-x^{2} & x>1
\end{array} \quad \text { and } \quad h(x)= \begin{cases}1+x & x<1 \\
14 & x=1 \\
4-x^{2} & x>1\end{cases}\right.
$$

have identical left and right limits to those of f.

Three Famous Examples

1. The Sign function is defined by

$$
\operatorname{sgn}(x)= \begin{cases}1 & x>0 \\ 0 & x=0 \\ -1 & x<0\end{cases}
$$

Clearly $\lim _{x \rightarrow 0^{-}} \operatorname{sgn}(x)=-1 \neq 1=\lim _{x \rightarrow 0^{+}} \operatorname{sgn}(x)$ and so $\lim _{x \rightarrow 0} \operatorname{sgn}(x)$ does not exist.

2. Consider $f(x)=\frac{\sin x}{x}$ as x approaches 0 .

Constructing a table of values suggests $\lim _{x \rightarrow 0} f(x)=1$.

x	-1	-0.1	-0.01	0.01	0.1	1
$f(x)$	0.84147	0.99833	0.99998	0.99998	0.99833	0.84147

This limit is very important in Calculus: we will return to it later.
3. (Difficult) The function $f(x)=\cos \left(\frac{1}{x}\right)$ is undefined at $x=0$.

The sequences $x_{n}=\frac{1}{2 n \pi}$ and $\hat{x}_{n}=\frac{1}{(2 n-1) \pi}$ where $n=1,2,3,4,5,6, \ldots$, both approach $x=0$ from above, and yet

$$
f\left(x_{n}\right)=\cos (2 n \pi)=1 \quad \text { and } \quad f\left(\hat{x}_{n}\right)=\cos ((2 n-1) \pi)=-1
$$

The first sequence suggests $\lim _{x \rightarrow 0^{+}} f(x)=1$, while the second suggests the limit is -1 .
Neither is true. The value of $f(x)$ oscillates infinitely many times between $y= \pm 1$ before reaching $x=0$. The values of $f(x)$ do not get closer to anything, and so there is no limit at $x=0$.

Homework

1. Find the vertical asymptotes of $f(x)=\frac{x-1}{2 x^{2}-x-1}$. In particular, compute $\lim _{x \rightarrow 1} f(x)$ to show that f does not have a vertical asymptote at $x=1$.
