2.3 Calculating Limits Using the Limit Laws

Calculating limits by testing values of x close to a is tedious. The following Theorem essentially says that any ‘nice’ combination of functions has exactly the limit you’d expect.

Theorem. Suppose $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ both exist and that c is constant. Then the following limits exist and may be computed.

1. $\lim_{x \to a} c = c$
2. $\lim_{x \to a} x = a$
3. $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$
4. $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
5. $\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$
6. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ (provided $\lim_{x \to a} g(x) \neq 0$)

The Theorem also holds for one-sided limits and, with a little care\(^1\) for infinite limits. For example, if $\lim_{x \to 2} f(x) = -3$ and $\lim_{x \to 2} g(x) = -\infty$, then

$$\lim_{x \to 2} [f(x) + g(x)] = -\infty \quad \text{and} \quad \lim_{x \to 2} f(x)g(x) = \infty$$

Corollary. Suppose that $p(x) = c_na^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0$ is a polynomial, then $\lim_{x \to a} p(x) = p(a)$. Moreover, if r is any rational function, and $a \in \text{dom}(r)$, then $\lim_{x \to a} r(x) = r(a)$.

Proof. Simply calculate:

$$\lim_{x \to a} p(x) = \lim_{x \to a} c_nx^n + \cdots + c_1x + c_0 = c_n \lim_{x \to a} x^n + \cdots + c_1 \lim_{x \to a} x + c_0 = c_na^n + \cdots + c_1a + c_0 = p(a)$$

If r is rational, then $r(x) = \frac{p(x)}{q(x)}$ for some polynomials p, q. Rule 6 now finished things off. \(\blacksquare\)

\(^1\)If you end up with an indeterminate form $0 \div 0$, $\infty - \infty$, etc., then the rules don’t apply. We will deal with these limits later using l’Hôpital’s Rule.
Examples

1. Suppose that \(\lim_{x \to a} f(x) = 3 \), \(\lim_{x \to a} g(x) = -1 \), \(\lim_{x \to a} h(x) = \infty \), and \(\lim_{x \to a} h(x) = 6 \). Then
 \[
 \lim_{x \to a} f(x) + 3g(x) = 3 + 3(-1) = 0
 \]
 \[
 \lim_{x \to a} 2f(x)g(x)h(x) = 2 \cdot 3 \cdot (-1) \lim_{x \to a} h(x) = -\infty
 \]
 \[
 \lim_{x \to a} 2f(x)g(x)h(x) = 2 \cdot 3 \cdot (-1) \cdot 6 = 36
 \]
 \[
 \lim_{x \to a} \frac{g(x)}{f(x)h(x)} = \frac{-1}{3 \lim_{x \to a} h(x)} = 0
 \]
 \[
 \lim_{x \to a} \frac{g(x)}{f(x)h(x)} = \frac{-1}{3 \cdot 6} = \frac{-1}{18}
 \]

2. Simple evaluation:
 \[
 \lim_{x \to 1} \frac{x^3 + 2x^2 - x - 1}{4x^2 - 1} = \frac{1 + 2 - 1 - 1}{4 - 1} = \frac{1}{3}
 \]

3. Factorizing:
 \[
 \lim_{x \to 2} \frac{x^2 - 7x + 10}{x^2 - 4x + 4} = \lim_{x \to 2} \frac{(x-2)(x-5)}{(x-2)(x-2)} = \lim_{x \to 2} \frac{x-5}{x-2} = -3 \lim_{x \to 2} \frac{1}{x-2} = \infty
 \]

Roots and Rationalizing

Theorem. \(\lim_{x \to a} f(x) = L \implies \lim_{x \to a} \sqrt[3]{f(x)} = \sqrt[3]{L} \)

Recall how you would convert an expression with surds in the denominator into one with surds in the numerator:

\[
\frac{4}{3 + \sqrt{5}} = \frac{4}{3 + \sqrt{5}} \cdot \frac{3 - \sqrt{5}}{3 - \sqrt{5}} = \frac{4(3 - \sqrt{5})}{9 - 5} = 3 - \sqrt{5}
\]

A similar approach can be used for limits.

Examples

1. \(\lim_{x \to 0} \frac{\sqrt{x + 3} - \sqrt{3}}{x} \) yields the indeterminate form \(\frac{0}{0} \). Multiplying by \(1 = \frac{\sqrt{x + 3} + \sqrt{3}}{\sqrt{x + 3} + \sqrt{3}} = 1 \) fixes the problem:
 \[
 \lim_{x \to 0} \frac{\sqrt{x + 3} - \sqrt{3}}{x} = \lim_{x \to 0} \frac{\sqrt{x + 3} - \sqrt{3}}{x} \cdot \frac{\sqrt{x + 3} + \sqrt{3}}{\sqrt{x + 3} + \sqrt{3}}
 \]
 \[
 = \lim_{x \to 0} \frac{x + 3 - 3}{x(\sqrt{x + 3} + \sqrt{3})}
 \]
 \[
 = \lim_{x \to 0} \frac{1}{\sqrt{x + 3} + \sqrt{3}} = \frac{1}{2\sqrt{3}}
 \]

2. \(\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x - 4} = \frac{4}{5} \)
Comparing Limits and the Squeeze Theorem

While simple limits can be computed using the basic limit laws, more complicated functions are often best treated by comparison.

Theorem. Suppose that \(f(x) \leq g(x) \) for all \(x \neq a \) and suppose that \(\lim_{x \to a} f(x) \) and \(\lim_{x \to a} g(x) \) both exist. Then
\[
\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)
\]

Theorem (Squeeze Theorem). Suppose that \(f(x) \leq g(x) \leq h(x) \) for all \(x \neq a \), and that \(\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \). Then \(\lim_{x \to a} g(x) \) exists and also equals \(L \).

Example In this example we compare the complicated function \(g(x) = x \sin \left(\frac{1}{x^2} \right) \) with the much simpler function \(f(x) = |x| \). Since \(-1 \leq \sin \left(\frac{1}{x^2} \right) \leq 1\) for all \(x \neq 0 \), we have that
\[
-|x| \leq x \sin \left(\frac{1}{x^2} \right) \leq |x|
\]
Since \(\lim_{x \to 0} |x| = 0 \) it follows that
\[
\lim_{x \to 0} x \sin \left(\frac{1}{x^2} \right) = 0
\]

Homework

1. (a) Prove that \(x - y = (x^{1/3} - y^{1/3})(x^{2/3} + x^{1/3}y^{1/3} + y^{2/3}) \).

(b) Hence or otherwise compute the limit \(\lim_{x \to 8} \frac{\sqrt{x} - 2}{x - 8} \).

2. Suppose that \(f(x) < g(x) \) for all \(x \neq a \) and that limits of \(f \) and \(g \) both exist at \(x = a \). Give an example which shows that we may only conclude that \(\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x) \). That is, the inequality need not be strict.

3. Show that \(\lim_{x \to 0} x^2 \cos \left(\frac{1}{x} \right) \) exists and compute it.