2.4 The Precise Definition of a Limit (Optional & Non-examinable!)

In our earlier definition of limit we did not explain what the terms ‘approaches’ or ‘arbitrarily close’ mean. The concept of arbitrarily close in mathematics works something like a game. To say that one can find a number arbitrarily close to \(L \), one must be able to give an example when told:

“Give a number closer to \(L \) than a distance \(\varepsilon \)

regardless of how small a distance \(\varepsilon \) is given.

The idea of a limit \(\lim_{x \to a} f(x) = L \) is that one can force the distance between \(f(x) \) and \(L \) to be as small as one likes by choosing the distance between \(x \) and \(a \) to be small enough.

Definition. Suppose \(f \) is a function defined on an interval containing \(x = a \), but not necessarily at \(a \). We say that \(f \) has limit \(L \) as \(x \) approaches \(a \) if:

For all \(\varepsilon > 0 \) there is some \(\delta > 0 \) such that

\[
0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon
\]

\[(\dagger)\]

\[\lim_{x \to a} f(x) = L\]

Regardless of the \(\varepsilon \) we are given, we can find some \(\delta \) which satisfies \((\dagger)\)

It is usually very difficult to find an explicit formula for a suitable \(\delta \) in terms of \(\varepsilon \): the Definition is instead used to prove a few basic examples and all of the limit laws and theorems from previous sections.\footnote{The details are covered in the first two weeks of an Upper Division Analysis course.}

Example We prove that \(\lim_{x \to 2} x^2 = 4 \).

Let \(\varepsilon > 0 \) be given, and define \(\delta = \min(\frac{\varepsilon}{3}, 1) \).

If \(0 < |x - 2| < \delta \), then \(|x - 2| < 1 \implies x + 2 < 3 \), and so

\[
|x^2 - 4| = |(x - 2)(x + 2)| = |x - 2||x + 2| < \delta \cdot 3 \leq \varepsilon.
\]

and so \(\lim_{x \to 2} x^2 = 4 \).

How did we come up with the choice of \(\delta = \min(\frac{\varepsilon}{3}, 1) \)? Scratch-work and creativity! Indeed it is far from the only suitable choice.
No Limit In this picture the left- and right-limits are different, hence there is no limit at \(x = a \). How can we view this in terms of \(\epsilon \) and \(\delta \)?

\[
\lim_{x \to a^-} f(x) = L \quad \text{and} \quad \lim_{x \to a^+} f(x) = L' \]

\(\lim_{x \to a} f(x) = L \) says that \(L \) is the only possible candidate for the limit.

Suppose we were given the indicated value \(\epsilon \). Regardless of our choice of \(\delta > 0 \), we will be able to find values of \(x \) (in the blue region) which satisfy both

\[
0 < |x - a| < \delta \quad \text{and} \quad |f(x) - L| \geq \epsilon
\]

The definition of limit does not hold for all \(\epsilon > 0 \), and so the limit does not exist.

Homework

1. Suppose that \(\lim_{x \to a} f(x) = L \). That is, for all given \(\epsilon > 0 \), there is some \(\delta > 0 \) for which

\[
0 < |x - a| < \delta \implies |f(x) - L| < \epsilon.
\]

Let \(c \neq 0 \) be constant and assume that \(\epsilon > 0 \) is given. Show that there exists \(\delta > 0 \) for which

\[
0 < |x - a| < \delta \implies |c f(x) - cL| < \epsilon.
\]

This proves that \(\lim_{x \to a} c f(x) = cL \). The other limit laws are proved similarly.