
2.5 Continuity

Continuous functions behave nicely when taking limits.

Definition. f is continuous at x = a if lim
x→a

f (x) = f (a).

f is discontinuous at x = a if lim
x→a

f (x) 6= f (a), or does not exist: we call a a discontinuity of f .
If f is continuous at all values a then we simply say that x is continuous.
If f is only defined when x ≥ a then we say that f is continuous at x = a if lim

x→a+
f (x) = f (a). The definition

for x ≤ a is similar.1

Example f (x) = x3 − 2 is continuous at all values x = a since, by the limit laws, lim
x→a

x3 − 2 =

a3 − 2 = f (a).

Discontinuities The loose idea of a continuous function is that one can draw its graph without
taking one’s pen off the paper. What then do functions with discontinuities look like? For a function
to be continuous at x = a, we need three things:

1. lim
x→a

f (x) must exist.

2. f (a) must exist.

3. lim
x→a

f (x) must equal f (a).

By thinking of examples which fail one each of these requirements, we can conjure several types of
discontinuity.

Non-Example 1 Let f (x) =

{
x2 if x > 2
4− x if x ≤ 2

For this function, the left- and right- limits are distinct at x = 2:

lim
x→2−

f (x) = 4− 2 = 2

lim
x→2+

f (x) = 22 = 4

and so lim
x→2

f (x) does not exist. f is discontinuous at x = 2.
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Non-Example 2 Let g(x) =
x3 + x2 − 3x− 3

(x + 1)
=

(x2 − 3)(x + 1)
(x + 1)

In this case the limit at x = −1 exists: by the limit laws,

lim
x→−1

g(x) = lim
x→−1

x2 − 3 = −4.

However g(−1) does not exist and so −1 is a discontinuity of g. −2
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1Strictly this is the definition of right- and left-continuity. We will not use these terms.
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Non-Example 3 Let h(x) =


x2 − 2 if x > 2
7 if x = 2
6− x if x < 2

In this case the left- and right- limits are the same at x = 2:

lim
x→2−

h(x) = 6− 2 = 4

lim
x→2+

h(x) = 22 = 4

and so lim
x→2

h(x) exists and equals 4. This does not, however, equal

g(2) = 7.
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Removable Discontinuities Non-examples 2 and 3 are almost
continuous in that a very small change to the function results in a
continuous function.

Definition. A discontinuity x = a of f is removable if lim
x→a

f (x) = L
exists.

Theorem. If a is a removable discontinuity of f then

f̃ (x) =

{
f (x) x 6= a
L x = a

is continuous at a

We simply fill in a hole in the graph of the function so that f̃ may
be drawn without taking the pen off the paper.
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Non-example 2: the
removable discontinuity has

been removed.

Non-removable discontinuities If lim
x→a

f (x) is undefined, then x = a is non-removable.

Examples

1. Non-example 1 has a non-removable discontinuity at x = 2.

2. f (x) =
1

(x− 1)2 has lim
x→1

f (x) = ∞ which is undefined, so

the discontinuity is non-removable. The vertical asymptote
at x = 1 is an example of an infinite discontinuity.
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3. The Sign function sgn(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

has a non-removable discontinuity at x = 0 since

lim
x→0

sgn(x) does not exist. This is an example of a jump discontinuity.
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There are Lots of Continuous Functions!

Theorem. The following functions are continuous everywhere they are defined:

1. Polynomials

2. Rational functions

3. Trigonometric functions (note tan x has infinite discontinuities at x = ±π
2 ,± 3π

2 , etc.)

4. Power functions

5. Sums, products and quotients of continuous functions

Example f (x) = cos x + 3x2 + 17x3/2 − 4x7/3 − 7
x− 2

is continuous on the intervals [0, 2) and (2, ∞).

Because of the x3/2 term, f is undefined when x < 0. Dividing by x− 2 means that f has a vertical
asymptote at x = 2.

We can also compose continuous functions

Theorem. If lim
x→a

g(x) = L and f is continuous at L, then lim
x→a

f (g(x)) = f (L).

In particular, if g is continuous at a and f is continuous at g(a), then f ◦ g is continuous at a.

Examples

1. f (x) = sin(
√

x2 + 1) is continuous everywhere.

2. exp(x2 − x−2) is continuous except at x = 0.

3. g(x) = (1− cos x)−3 is continuous except when cos x = 1, i.e. when x 6= 0,±2π, . . .

The Intermediate Value Theorem

Several powerful applications of continuous functions follow from this theorem.

Theorem (Intermediate Value). Suppose f is continuous on [a, b], that f (a) 6= f (b), and that N lies
between f (a) and f (b). Then there is some value c between a and b for which f (c) = N.

As the picture shows, there may be more than one choice of c
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The Intermediate Value Theorem can be interpreted in many ways, for example:

• If the temperature at 8 a.m. is 65◦ F and at 12 p.m. is 88◦ F, then at some time during the morning,
the temperature must have been 75◦ F.

• If you climb a 10,000 ft mountain from sea level, then at some point you must be at an elevation
of 6,329 ft.

• Two runners run the same course in the opposite direction, starting at the same time at opposite
ends and finishing at the same time. Then the runners must pass each other at some time during
the race.

In mathematics, the Theorem is often used to show that certain equations have solutions, and to
home in on these.

Corollary. If f (a) and f (b) have opposite signs and f is continuous, then there is a solution c to f (x) = 0,
which lies between a and b.

Example f (x) = cos x− x is continuous, and f (0) = 1 and f (π
2 ) = −π

2 have opposite signs.
Therefore the equation x = cos x has at least one solution c ∈ (0, π

2 ): that is, cos c = c.
With a calculator, you can try more values of x, and use these to narrow down your estimate of c.

−1

1f(
x)

xπ
2

π
4c

Homework

1. Show that x17 + tan(x) + 1 = 0 has a solution near x = 0. Use your calculator to approximate
it to 3 decimal places.

2. f (x) = x + 1
x satisfies f (1) > 0 and f (−1) < 0. Can we conclude that there is some value

c ∈ (−1, 1) for which f (c) = 0? Why/why not?
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