2.7 Derivatives and Rates of Change =

Differentiation is the process of calculating and analyzing the rate
of change of a function. By looking at a graph, we can say qualita-
tive things about the rate of change of a function. For example in

the picture, as x increases, the value of f(x) = x> — x is alternately
increasing, decreasing, and increasing.

The question for a mathematician is how to quantify this? Before
we do that, we need to agree what we mean by rate of change. -1

Definition. The rate of change of a function f(x) at x = a is the slope of the tangent line to the graph
y = f(x) at x = a, if such a tangent line exists.

Recall from Section 2.1 how we compute the tangent line at a point.

Example For f(x) = x> — x at (1,0) we construct secant ¥ 5-
lines through (1,0) and (%, £2 — £) and compute the limit of
their slopes: 7
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The rate of change of the function f(x) = x> — x at x = 1 is therefore 2.

Tangent Lines in the Abstract Given a general curve y = f(x) we follow the same procedure.

Definition. The tangent line to the curve y = f(x) at (a, f(a)) is
the line through (a, f(a)) with slope
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supposing the limit exists. The tangent line has equation

y=m(x—a)+ f(a)

Often we think of h = x — a as being important, and the defi- g
nition becomes (click)
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Since ‘slope of the tangent line” is such a mouthful, we have a special term. ..



Definition 2.1. A function f is differentiable at x = a if the above limits
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exist. If f is differentiable at x = 4, then this limit is denoted f’(a) or j—i _and is termed the
derivative of f at x = a.
Examples
1. If f(x) = x?, then
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hence f is differentiable at x = 3 with derivative f'(3) = 6.

3
2. Show that the function f(x) = xzi—iZ is differentiable 1 o
at x = 1, and compute the equation of its tangent line.
| \ \ \ \
First compute the limit: a little algebraic simplifica- -3 -2 -1 1 2
tion is required. " 14
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Thus f is differentiable at x = 1 with derivative f'(1) = }. The tangent line therefore has
gradient 1 and passes through the point (1, (1)) = (1,1). Its equation is then
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We could alternatively have computed lim Y
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Leibniz notation and rates of change The two most famous contributors to Calculus, Issac Newton

and Gottfried Wilhelm Leibniz, had different notations for derivative. The f’(a) notation is a modi-

fication of Newton’s approach while % is Leibniz’s notation. The importance of Leibniz’s notation

is that it reminds us what derivatives are: rates of change of one quantity with respect to another.
The units of a derivative should then be obvious in any situation. For example:

n fact Newton used a dot over a variable and always differentiated with respect to time, so if y = f(t) , the derivative
of f with respect to t would be denoted y.



Velocity is the rate of change of position with respect to time. If a particle is at distance s(t) from a
fixed point at time ¢, then the average velocity of the particle between timest =aand t = b is
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The instantaneous velocity at t = a is the derivative
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The notation helps us get units right: velocity has units of distance divided by time, e.g. m/s,
mph, ft/s, miles/year, furlongs per fortnight, etc.

Electric Current is the rate of change of charge with respect to time. For example, suppose that the
charge Q coulombs stored in a capacitor at time t seconds is

The current flow at t = 3 seconds is then

dQ _ lim
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= gC/s.

This unit, coulombs per second, is usually called an ampere.

Marginal Profit (economics) Suppose that a tea seller selling x Ib of tea makes $ p(x) profit.
If the tea seller is currently selling 100 1b of tea and intends to sell a small amount Ax Ib more tea
is sold, then the increase in profit will be

Ap = p(100 + Ax) — p(100)

The instantaneous rate of change of p is the derivative:
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measured in dollars per pound. If, for instance, p’(100) = 0.7 $/1Ib, then selling 101 Ib of tea
will yield approximately 70 cents more profit than selling 100 1b.



A Function with no Rate of Change Let f(x) = |x —4|. What happens if we try to differentiate
this at x = 4? We are obliged to calculate the limit
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However,
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whence the left- and right-limits of |Z—| are non-equal and the limit does not exist. If you think about
why, the function f(x) has a corner at x = 4. Is the function still decreasing, or is it increasing, or
neither? Hopefully, you agree that the very idea of rate of change makes no sense for this function at
x = 4: we say that f is not differentiable at x = 4.
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Homework

A company sells cellphone plans. The cost of data is priced dependent on how much you use: if you
use x megabytes of data per month, the cost in dollars will be

1
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1. What are the units of the rate of change ¢’(a)?
2. Use the limit definition to compute the value of ¢’(a) for all positive values of a.

3. You should find that ¢/(a) > 1 for all 2 > 0. Interpret what this means in terms of the cost of an
additional megabyte of data.



	Derivatives and Rates of Change

	anm0: 
	anm1: 


