3.3 Derivatives of Trig functions

Differentiating polynomials is (relatively) easy. Unfortunately trigonometric functions require some more work:
Differentiating Sine The first thing to do is look at the picture. For reasons to be seen in a moment, we work in radians. We may visually differentiate the graph of $f(x)=\sin x$: think about where the curve is:
horizontal $\Longrightarrow f^{\prime}(x)=0$
increasing $\Longrightarrow f^{\prime}(x)>0$
decreasing $\Longrightarrow f^{\prime}(x)<0$
$f^{\prime}(x)$ certainly looks very like a cosine curve, but notice that we have no scale on the y-axis. We should suspect that $\frac{\mathrm{d}}{\mathrm{d} x} \sin x=\cos x$, but we still need a proof.

Return to the definition of derivative. To differentiate $f(x)=\sin x$, we need to evaluate the limit as $h \rightarrow 0$ of the following difference quotient:

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\sin (x+h)-\sin x}{h} \\
& =\frac{\sin x \cos h+\cos x \sin h-\sin x}{h} \\
& =\sin x \frac{\cos h-1}{h}+\cos x \frac{\sin h}{h}
\end{aligned}
$$

If our guess above is correct, then we need to prove the following:
Theorem. If angles are measured in radians, then

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h}=1 \quad \text { and } \quad \lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0
$$

It follows that $\frac{\mathrm{d}}{\mathrm{d} x} \sin x=\cos x$.
Proof. Everything follows from the picture and the Squeeze Theorem.
Consider a segment of a circle of radius 1 and angle $h>0$. By the definition of radians, the arc-length of the segment is also h. Drawing the triangles as shown, it should be clear that all lengths are as claimed.
It is immediate that $\sin h<h$, and so $\frac{\sin h}{h}<1$.
Now recall that the area of the circular segment is

$$
\frac{h}{2 \pi} \cdot \text { area circle }=\frac{h}{2 \pi} \cdot \pi=\frac{h}{2}
$$

This must be less than the area of the large triangle, $\frac{1}{2} \tan h$. Therefore

$$
\frac{h}{2}<\frac{1}{2} \tan h=\frac{\sin h}{2 \cos h} \Longrightarrow \cos h<\frac{\sin h}{h}
$$

We now have

$$
\cos h<\frac{\sin h}{h}<1
$$

whenever $h>0$, whence the Squeeze Theorem tells us that $\lim _{h \rightarrow 0^{+}} \frac{\sin h}{h}=1$.
The limit as $h \rightarrow 0^{-}$is the same, because $\frac{\sin h}{h}$ is an even function.
The second limit will be proved below.
Notice where we required radians in the proof: for finding the arc-length and area of the circular segment. If you repeat the exercise measuring angles in degrees, you obtain the horrible expressions:

$$
\lim _{h \rightarrow 0} \frac{\sin h^{\circ}}{h^{\circ}}=\frac{\pi}{180} \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} x^{\circ}} \sin x^{\circ}=\frac{\pi}{180} \cos x^{\circ}
$$

The moral of the story: always work in radians!
Other trigonometric functions These are easily dealt with via a similar argument to the above, or using the quotient rule.
Theorem. The trigonometric functions have the following derivatives: all angles are measured in radians.

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \sin x & =\cos x & \frac{\mathrm{~d}}{\mathrm{~d} x} \cos x & =-\sin x \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \tan x & =\sec ^{2} x & \frac{\mathrm{~d}}{\mathrm{~d} x} \cot x & =-\csc ^{2} x \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \sec x & =\sec x \tan x & \frac{\mathrm{~d}}{\mathrm{~d} x} \csc x & =-\csc x \cot x
\end{aligned}
$$

Example proof. For $\tan x$ we use the quotient rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \tan x & =\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\sin x}{\cos x}=\frac{\frac{\mathrm{d}}{\mathrm{~d} x} \sin x \cdot \cos x-\sin x \cdot \frac{\mathrm{~d}}{\mathrm{~d} x} \cos x}{\cos ^{2} x} \\
& =\frac{\cos x \cdot \cos x-\sin x \cdot(-\sin x)}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x
\end{aligned}
$$

Examples

1. Find the derivative of $f(x)=x^{2} \tan x$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\mathrm{d}}{\mathrm{~d} x} x^{2} \cdot \tan x+x^{2} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x} \tan x \\
& =2 x \tan x+x^{2} \sec ^{2} x
\end{aligned}
$$

(product rule)
2. Compute $\frac{d}{d t} \sin 2 t$. For this we start with the double angle formula.

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} & \sin 2 t=\frac{\mathrm{d}}{\mathrm{~d} t} 2 \sin t \cos t \\
& =2\left(\frac{\mathrm{~d}}{\mathrm{~d} t} \sin t\right) \cdot \cos t+2 \sin t \cdot \frac{\mathrm{~d}}{\mathrm{~d} t} \cos t \tag{productrule}\\
& =2 \cos ^{2} t-2 \sin ^{2} t=2 \cos 2 t
\end{align*}
$$

3. Find the derivative of $s(t)=3 e^{t} \cos ^{2} t$. This problem requires a double application of the product rule. Think about the function as $s(t)=u v$, where $u=3 e^{t}$ and $v=\cos ^{2} t$. Then

$$
\begin{aligned}
& u^{\prime}=3 e^{t} \\
& v^{\prime}=\frac{\mathrm{d}}{\mathrm{~d} t}(\cos t \cos t)=-\sin t \cos t+\cos t(-\sin t)=-2 \sin t \cos t=-\sin 2 t
\end{aligned}
$$

where we used the product rule to differentiate v. Now use the product rule to combine these:

$$
s^{\prime}(t)=u^{\prime} v+u v^{\prime}=3 e^{t} \cos ^{2} t+3 e^{t}(-\sin 2 t)=3 e^{t}\left(\cos ^{2} t-\sin 2 t\right)
$$

Limits of Trigonometric Functions The limit $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ appears a lot. It can be used to simplify other related limits. For example suppose we want to compute

$$
\lim _{x \rightarrow 0} \frac{\tan 2 x}{\sin 3 x}
$$

The limit is the indeterminate form $\frac{0}{0}$
However, if we convert $\tan 2 x=\frac{\sin 2 x}{\cos 2 x}$ and then insert multiples of x, we can appeal to the above limit:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan 2 x}{\sin 3 x} & =\lim _{x \rightarrow 0} \sin 2 x \cdot \frac{1}{\cos 2 x} \cdot \frac{1}{\sin 3 x} \\
& =\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \cdot \frac{1}{\cos 2 x} \cdot \frac{3 x}{\sin 3 x} \cdot \frac{2}{3} \\
& =1 \cdot 1 \cdot 1 \cdot \frac{2}{3}=\frac{2}{3}
\end{aligned}
$$

In the second line, we inserted multiples of x in order to get expressions of the form $\frac{\sin (\operatorname{lump})}{\operatorname{lump}}$. The factor of $\frac{2}{3}$ is necessary to balance the extra x terms.

Homework

1. For what values of x does the graph of $y=3 e^{x} \sin x$ have a horiontal tangent line. Sketch the function. (First draw $y=3 e^{x}$, then recall that $-1 \leq \sin x \leq 1 \ldots$)
2. (a) Consider the picture on the right. Apply Pythagoras' Theorem to the red triangle to prove that

$$
(\cos h-1)^{2}+\sin ^{2} h \leq h^{2}
$$

(b) Use this to prove that $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0$.

