3.4 The Chain Rule

Compound rates of change Suppose that Cora runs twice as fast as Bill who runs at three miles per hour. Suppose that $b(t)$ and $c(t)$ are the distances travelled by the protagonists at time t. Then we certainly have

$$
\frac{\mathrm{d} b}{\mathrm{~d} t}=3
$$

However, Cora's position will be changing relative to Bill's: she runs twice as fast, so we may also write

$$
\frac{\mathrm{d} c}{\mathrm{~d} b}=2
$$

If we now ask how rapidly Cora's position is changing relative to t, the answer is obvious: twice as fast as Bill means 6 miles per hour. The critical observation for this section is that this is the product of the two given rates of change:

$$
6=\frac{\mathrm{d} c}{\mathrm{~d} t}=\frac{\mathrm{d} c}{\mathrm{~d} b} \cdot \frac{\mathrm{~d} b}{\mathrm{~d} t}=2 \cdot 3
$$

Theorem (Chain Rule). Suppose that f is differentiable at $g(a)$ and that g is differentiable at a. Then $f \circ g$ is differentiable at a and ${ }^{1}$

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} x}\right|_{x=a}(f \circ g)(x)=\left.\frac{\mathrm{d}}{\mathrm{~d} x}\right|_{x=a} f(g(x))=f^{\prime}(g(a)) g^{\prime}(a)
$$

Alternatively, if $u=g(x)$, then we may write this in Leibniz's notation,

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}=\frac{\mathrm{d} f}{\mathrm{~d} u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

In Leibniz's notation it appears that the expressions $\mathrm{d} u$ are being cancelled from top and bottom.
Example Find $\frac{\mathrm{d}}{\mathrm{d} x} \sin 3 x$
We write $y=f(g(x))$ where $u=g(x)=3 x$ and $f(u)=\sin u$. Hence

$$
\frac{\mathrm{d} f}{\mathrm{~d} u}=f^{\prime}(u)=\cos u \quad \text { and } \quad \frac{\mathrm{d} u}{\mathrm{~d} x}=g^{\prime}(x)=3
$$

Therefore $f^{\prime}(g(x))=\cos 3 x$ and so

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \sin 3 x=f^{\prime}(g(x)) g^{\prime}(x)=(\cos 3 x) \cdot 3=3 \cos 3 x
$$

More generally, $\frac{\mathrm{d}}{\mathrm{d} x} \sin k x=k \cos k x$ for any constant k.

[^0]Sketch Proof. Suppose ${ }^{2}$ that $g(x+h) \neq g(x)$ whenever $h \neq 0$. Then

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h} & =\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h} \cdot \frac{g(x+h)-g(x)}{g(x+h)-g(x)} \\
& =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \cdot \frac{f(g(x+h))-f(g(x))}{g(x+h)-g(x)} \\
& =g^{\prime}(x) \lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{g(x+h)-g(x)}
\end{aligned}
$$

Now let $t=g(x+h)-g(x)$, so that $h \rightarrow 0 \Longleftrightarrow t \rightarrow 0$

$$
\begin{aligned}
& =g^{\prime}(x) \lim _{t \rightarrow 0} \frac{f(g(x)+t)-f(g(x))}{t} \\
& =g^{\prime}(x) \cdot f^{\prime}(g(x))
\end{aligned}
$$

As the proof hopefully makes clear, we differentiate f then evaluate f^{\prime} at $g(x)$.
'Lumps': start with the outside function first When calculating examples using the chain rule, you may find it useful to to think about $g(x)$ as an abstract 'lump,' so that $f(g(x))$ is f (lump): concentrate on differentiating f first, then worry about the derivative of the lump. That is

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f(\text { lump })=f^{\prime}(\text { lump }) \cdot \frac{\mathrm{d}}{\mathrm{~d} x}(\text { lump })
$$

This is especially useful for examples where the chain rule is required more than once.
Example Differentiate $y=\sin \left(x^{2}\right)$. Treat x^{2} as the 'lump,' and ignore it during the first step: you might want to write as follows:
Step $1 \frac{\mathrm{~d}}{\mathrm{~d} x} \sin \left(x^{2}\right)=\cos (\quad) \cdot \frac{\mathrm{d}}{\mathrm{d} x}(\quad) \quad$ (since the derivative of sine is cosine)
Step $2 \frac{\mathrm{~d}}{\mathrm{~d} x} \sin \left(x^{2}\right)=\cos \left(x^{2}\right) \cdot \frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2}\right)$
(substitute in the lump)
Step $3 \frac{\mathrm{~d}}{\mathrm{~d} x} \sin \left(x^{2}\right)=\cos \left(x^{2}\right) \cdot 2 x$
(differentiate the lump)
Step $4 \frac{\mathrm{~d}}{\mathrm{~d} x} \sin \left(x^{2}\right)=2 x \cos \left(x^{2}\right)$ (rearrange for the final answer)

Of course, you wouldn't write each step separately. On your paper it might ultimately look like the following,

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \sin \left(x^{2}\right)=\cos \left(x^{2}\right) \cdot \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2}\right)=2 x \cos \left(x^{2}\right)
$$

and the reader would never know you'd been thinking lumpy thoughts!

[^1]Harder Examples You should be able to write out complete arguments for the following either using the basic method (define f, g, etc.) or using lumps.

1. $\quad \frac{\mathrm{d}}{\mathrm{d} x}\left(x^{4}+5 x^{2}\right)^{1 / 3}=\frac{1}{3}\left(x^{4}+5 x^{2}\right)^{-2 / 3}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{4}+5 x^{2}\right)\right)$

$$
\begin{aligned}
& =\frac{1}{3}\left(x^{4}+5 x^{2}\right)^{-2 / 3}\left(4 x^{3}+10 x\right) \\
& =\frac{4 x^{3}+10 x}{3\left(x^{4}+5 x^{2}\right)^{2 / 3}}
\end{aligned}
$$

2. $\frac{\mathrm{d}}{\mathrm{d} x} \cos \left(x+7 x^{-1}\right)=\left(-\sin \left(x+7 x^{-1}\right)\right)\left(\frac{\mathrm{d}}{\mathrm{d} x}\left(x+7 x^{-1}\right)\right)$

$$
=\left(-\sin \left(x+7 x^{-1}\right)\right)\left(1-7 x^{-2}\right)
$$

$$
=\left(7 x^{-2}-1\right) \sin \left(x+7 x^{-1}\right)
$$

3. This example uses the chain rule twice:

$$
\begin{array}{rlr}
\frac{\mathrm{d}}{\mathrm{~d} x} \tan \left(\sin \left(x^{3}\right)\right) & =\sec ^{2}\left(\sin \left(x^{3}\right)\right) \cdot\left(\frac{\mathrm{d}}{\mathrm{~d} x} \sin \left(x^{3}\right)\right) \\
& =\sec ^{2}\left(\sin \left(x^{3}\right)\right) \cdot \cos \left(x^{3}\right) \cdot\left(\frac{\mathrm{d}}{\mathrm{~d} x} x^{3}\right) \\
& =3 x^{2} \cos \left(x^{3}\right) \sec ^{2}\left(\sin \left(x^{3}\right)\right) & \text { (first 'lump' is } \left.\sin \left(x^{3}\right)\right) \\
\text { (second 'lump' is } x^{3} \text {) } \\
\text { (simplify and rearrange) }
\end{array}
$$

Homework

1. Differentiate $\sin (\sin (\sin (\sin x)))$.
2. Suppose that the function $f(x)$ satisfies the equation $[f(x)]^{3}+x \sin (f(x))=x^{3}+8$.
(a) Show first that $f(0)=2$.
(b) Now prove that $f^{\prime}(0)=-\frac{1}{12} \sin 2$.
(c) Try to compute $f^{\prime \prime}(0)$ (the answer's very ugly...)

[^0]: ${ }^{1}$ Most textbooks write $\left.\frac{\mathrm{d}}{\mathrm{d} x}\right|_{x=a}\left(f(g(a))=g^{\prime}(a) f^{\prime}(g(a))\right.$. There is no difference! We write it this way so that you can compare the two notations: $u=g(x) \Longrightarrow \frac{\mathrm{d} u}{\mathrm{~d} x}=g^{\prime}(x)$.

[^1]: ${ }^{2}$ This restriction is why the proof is a 'sketch.' Overcoming it is somewhat messy...

