
3.5 Implicit Differentiation

An implicit curve is a the set of points (x, y) satisfying an equation of the form
f (x, y) = 0. For example, the equation x2 + y2 = 25 describes a circle of
radius 5 centered at the origin. Suppose that we wanted to find the slope of
this curve at the point (3, 4). If the curve had an explicit equation y = f (x),
then we would simply be looking to compute f ′(3). Indeed this is one of the
ways to answer the question.
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Method 1 First solve for y in terms of x. We obtain

y =
√

25− x2

where we are taking the positive square root since our point of interest (3, 4) has a positive
y-co-ordinate. Now compute the derivative using the chain rule.

dy
dx

=
d

dx
(25− x2)−1/2 =

1
2
(25− x2)−1/2 · (−2x) =

−x√
25− x2

Evaluating this at x = 3 gives the required slope:

dy
dx

∣∣∣∣
x=3

=
−3√

25− 32
= −3

4

Method 2 Differentiate both sides of the implicit equation with respect to x, treating y as a function
of x. We do not need to know what y(x) is, we simply treat it as a ‘lump’ for the purposes of
the chain rule. In this case we obtain

d
dx

(x2 + y2) =
d

dx
1 =⇒ 2x + 2y

dy
dx

= 0
(

d
dx

(y(x))2 = 2y(x)
d

dx
y(x)

)
=⇒ dy

dx
= − x

y

=⇒ dy
dx

∣∣∣∣
(x,y)=(3,4)

= −3
4

The second method is known as implicit differentiation. Hopefully you agree that it is the easier
method! There is no difficulty with square roots, and the application of the chain rule, while abstract,
is also simpler. One extra challenge with implicit differentiation is that the result is an expression
for dy

dx as a function of both x and y. You therefore need to know both co-ordinates of a point before
you differentiate. Explicit differentiation only requires knowledge of x. More importantly, the above
expression dy

dx = − x
y only makes sense for those points (x, y) lying on the circle and where the circle

has a finite slope. For instance, dy
dx

∣∣∣
(x,y)=(10,1)

and dy
dx

∣∣∣
(x,y)=(5,0)

are both meaningless.
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How to implicitly differentiate

1. Differentiate both sides of an equation with respect to x.

2. Differentiate any expressions involving x normally.

3. Use the chain rule to differentiate any expressions involving y: e.g. d
dx (y

2) = 2y dy
dx .

4. Rearrange to isolate dy
dx in terms of x and y.

In most cases, when given an implicit curve, you have no option but to use implicit differentiation.
Method 1 relies on your being able to solve explicitly for y, which cannot be done in general.

Examples

1. Find the equation of the tangent line to the curve x2 + y3 − 2xy = 1 at the point (2, 1).
In order to perform an implicit differentiation, we will need to find d

dx y3 = 3y2 dy
dx , and use the

product rule to compute

d
dx

(xy) =
(

d
dx

x
)
· y + x · d

dx
y = y + x

dy
dx

Putting this all together, and differentiating both sides with respect to x, we obtain

d
dx

(x2 + y3 − 2xy) =
d

dx
1 =⇒ 2x + 3y3 dy

dx
− 2y− 2x

dy
dx

= 0

=⇒ dy
dx

=
2x− 2y
2x− 3y2

The tangent line at (2, 1) therefore has gradient dy
dx

∣∣∣
(x,y)=(2,1)

= 2
1 = 2 and therefore has equation

y− 1 = 2(x− 2) ⇐⇒ y = 2x− 3

2. Find the points on the implicit curve x2 = y2(1 − y2) at which the
gradient is horizontal, then vertical. What is happening at (0, 0)?

Implicitly differentiating we obtain

2x = 2y
dy
dx

(1− y2)− 2y3 dy
dx

=⇒ dy
dx

=
x

y(1− 2y2)

Ignoring the origin which gives the meaningless dy
dx = 0

0 , we get

Horizontal ⇐⇒ x = 0 ⇐⇒ (x, y) = (0,±1)

Vertical ⇐⇒ 1− 2y2 = 0 ⇐⇒ y = ± 1√
2
⇐⇒ (x, y) =

(
± 1

2 ,± 1√
2

)
−1

1y

x
1
2−1

2

Finally we deal with (0, 0). Squaring we obtain(
dy
dx

)2

=
x2

y2(1− 2y2)2 =
y2(1− y2)

y2(1− 2y2)2 =
1− y2

(1− 2y2)2 −→y→0
1

which yields gradients of ±1 at (0, 0)
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Differentiating Inverse Functions

Implicit differentiation can be used to compute the derivatives of inverse functions. For example,
here is how to find the derivative of y = sin−1 x = arcsin x.

• y = sin−1 x is equivalent to x = sin y.

• Implicitly differentiate:

d
dx

x =
d

dx
sin y =⇒ 1 = cos y · dy

dx

• Rearrange
dy
dx

=
1

cos y
=

1
cos(sin−1 x)

.

The last expression is very ugly. It can be simplified by think-
ing about an abstract triangle: since the expression contains cos y
we draw a right-triangle that has y as an angle. By assumption,
sin y = x, so we label the sides of the triangle in such a manner
that this relation holds: namely sin y = x = opposite

hypotenuse . Pythago-

ras’ Theorem gives the length
√

1− x2 of the adjacent. From the
triangle, it is immediate that cos y = 1√

1−x2 , and so

d
dx

sin−1 x =
1√

1− x2
√

1− x2

x
1

y

More generally, we can use implicit differentiation to prove the following:

Theorem. If f is an invertible function, then
d

dx
f−1(x) =

1
f ′( f−1(x))

The Theorem can be used to find the derivative of an inverse function at a particular point, without
having to compute the inverse function explicitly.

Example Suppose y = f (x) = x5 + 3x2 − 29x. Find d
dx f−1(x) at x = −25.

It should be clear that −25 = f (1). Applying the Theorem, we obtain

d
dx

∣∣∣∣
x=−25

f−1(x) =
1

f ′( f−1(−25))
=

1
f ′(1)

However f ′(x) = 5x4 + 6x− 29 =⇒ f ′(1) = 5 + 6− 29 = −18. It follows that

d
dx

∣∣∣∣
x=−25

f−1(x) = − 1
18

Homework

1. The Tschirnhausen cubic is the curve x3 = 9a
(
x2 − 3y2), where a is a constant. Prove that the

tangent line to the cubic is horizontal if x = 6a. Can you explain what the curve is doing at
x = 0, and why it is not strictly correct to say that the tangent is horizontal?

2. Prove the Theorem on on the derivative of an inverse function.
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