
3.8 Exponential Growth and Decay

Recall the definition of the natural exponential function: it is the exponential function whose deriva-
tive is equal to itself. The exponential function is in fact more powerful than this: it can be used to
describe any process where the rate of change of the output is proportional to1 the output itself.

Example: population growth We might expect that, as a population increases, the number of babies
born will also increase. A simple model might say that if one doubles the population, the number of
babies born each year would also double: this is direct proportion.2 The rate of change of population
is a constant multiple of the population itself. If we let P(t) represent the population at time t, then
we can write this mathematically:

dP
dt

= kP (∗)

where k > 0 is some positive constant. Here dP
dt is the rate of increase in the population (number

of babies born per year—for simplicity we assume no-one dies). The differential equation (∗) has a
special name.

Definition. The natural growth equation is the differential equation

dy
dx

= ky

where k > 0 is constant. k is known variously as the growth constant, or natural growth rate, or rate of
natural increase.
If k < 0, the equation is known as the natural decay equation. The names for k change similarly.

Theorem. If y(x) satisfies the natural growth/decay equation, then

y(x) = y(0)ekt

where y(0) is the value of y when x = 0.

Exponential functions are therefore precisely the solutions of the natural growth/decay equa-
tions.

There are many situations in the sciences when the natural growth equation applies. Here are a
few examples.

Population of bacteria Suppose that a population of bacteria grows naturally. Suppose that the
initial population is 100 bacteria, and, after 1 hour, the population has grown to 120. How large will
the population be after 2 hours? How long will it take for the population to reach 1,000,000 bacteria?

Suppose that the population at time t hours is given by the function P(t). We are told the follow-
ing:

1A constant multiple of.
2This is a very simple model. There is good evidence to suggest that that people typically have fewer babies per person

when population is high.
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P grows naturally Therefore dP
dt = kP for some positive constant k.

Initial population P(0) = 100

Population at 1 hour P(1) = 120

By the Theorem, we know that

P(t) = P(0)ekt = 100ekt

since we know the initial population. We need only evaluate this expression at t = 1 to find the
constant k.

120 = P(1) = 100ek =⇒ ek =
6
5
= 1.2 =⇒ k = ln

6
5

In this case it is not so useful to find k directly, ek is sufficient to obtain a general formula:

P(t) = 100ekt = 100(ek)t = 100
(

6
5

)t

After 2 hours we have P(2) = 100
( 6

5

)2
= 100 · 36

25 = 144 bacteria.
To find how long it takes to reach 1,000,000 bacteria, we solve3

100
(

6
5

)t

= 1000000 =⇒
(

6
5

)t

= 10000

=⇒ t ln
6
5
= ln 10000

=⇒ t =
ln 10000

ln 6− ln 5
≈ 50.5 hours
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3Because of the powers of 10, it is actually simpler to use log10 for evaluating on your calculator: t = log10 10000
log10 1.2 = 4

log10 1.2 .
In calculus, natural log is safer!
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Half-life Radioactive materials emit radiation (energy)
and, as they do so, they transform (decay) into other ma-
terials. The half-life, usually denoted λ, of a material is the
time taken for the intensity of the radiation to drop to half
its initial value. It follows that the intensity of the radiation
satisfies an equation

I(t) = I(0) · 2−t/λ

Thus at time λ, the intensity is 1
2 the original, at time 2λ the

intensity is 1
4 the original, etc. As a differential equation, we

have

dI
dt

= I(0) · −1
λ
· (ln 2) · 2−t/λ =

− ln 2
λ

I

I(
t)

0
t

λ 2λ 3λ 4λ

I(0)

1
2 I(0)

1
4 I(0)
1
8 I(0)

which is the natural decay equation with k = − ln 2
λ . We should check: by the Theorem, the solution

is

I(t) = I(0)ekt = I(0)e−
t ln 2

λ

which might look different. However, by the exponential laws,

e−
t ln 2

λ = (eln 2)−
t
λ = 2−t/λ

so we get the same equation. The same equations are satisfied by the mass of a radioactive substance.
For example:

Question: A spy disarms a 60 year old nuclear warhead, originally containing 1kg of pure plutonium
239. Pu239 has a half-life of 24,200 years: what mass of plutonium remains?

Solution: We have λ = 24200 years and initial mass m(0) = 1 kg. It follows that

m(t) = m(0)2−t/24200 = 2−t/24200

After t = 60 years, there remains

m(60) = 2−60/24200 ≈ 0.99828 kg = 998.28 grams of plutonium.

The missing mass will (mostly) be uranium 235 and other decay products.

Newton’s Law of Cooling Newton’s law of cooling is the basic assumption that the rate of change
of temperature of a body should be proportional to the difference between its temperature and that of
the surroundings.

If we let T(t) be the temperature of the body at time t, and Ts the temperature of the surroundings,
this may be written as a differential equation:

dT
dt

= −k(T − Ts)

where k > 0 is constant. Note the sign of the constant: if the body is hotter than the surroundings
(T > Ts), then we expect the body to cool down ( dT

dt < 0).
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The differential equation can be solved by substitution: if we let y(t) = T(t)− Ts, then4

dy
dt

= −ky

This is the natural decay equation, with solution

y(t) = y(0)e−kt

Substituting back for y(t) = T(t)− Ts yields

T(t) = Ts + (T(0)− Ts)e−kt

With a little thought, you should be convinced that the graph of the solution is as follows:

T
(t
)

0
t

T(0)

Ts

Of course a scientist would then test Newton’s Law by experimenting, say with a cup of coffee. . .

Example Suppose that a physicist wants to test Newton’s Law of cooling. They take a cup of hot
coffee (200◦ F) outside on a warm day (80◦ F) and test the temperature. They record the following
data.

Time (mins) 0 4 8 12
Temp (◦ F) 200 140 110 100

1. Use the data values at t = 0 and 4 minutes to find an expression for T(t), assuming Newton’s
Law of cooling holds.

2. Are the observations at 8 and 12 minutes consistent with the Law?

4Since Ts is constant, dy
dt = dT

dt .
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Assuming that Newton’s Law holds, and applying the fact that Ts = 80 and T(0) = 200, we must
have

T(t) = 80 + (200− 80)e−kt = 80 + 120e−kt

Now evaluate at t = 4 minutes. We must have

140 = 80 + 120e−4k =⇒ e−4k =
140− 80

120
=

1
2

There is no need to compute k explicitly5 since we can use e−4k in the formula:

e−kt = (e−4k)t/4 =

(
1
2

)t/4

We therefore have our model, assuming that Newton’s Law holds:

T(t) = 80 + 120
(

1
2

)t/4

Comparing this with the observed temperatures in the table, we see that we should have

T(8) = 80 + 120
(

1
2

)8/4

= 80 + 30 = 110◦ F

which is exactly as observed, and

T(12) = 80 + 120
(

1
2

)12/4

= 80 + 15 = 95◦ F

which is below the observation. It might be that the last obervation was made a little late, or that
the sun came out towards the end of the observations. Or indeed the model could be wrong: further
experimentation is needed!

5It is 1
4 ln 2.
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