4.2 The Mean Value Theorem

The Mean Value Theorem is one of the most important results in calculus. We prove it as a consequence of a slightly simpler result.

Theorem (Rolle). Suppose that f is continuous on a closed interval $[a, b]$, differentiable on (a, b), and that $f(a)=f(b)=0$. Then there exists some $c \in(a, b)$ for which $f^{\prime}(c)=0$.

The essential idea is that if a differentiable function starts and finishes at the same value, and starts heading upwards, then at some point it must turn around and start heading down again.

Proof. Suppose that f is non-constant, for otherwise any c will do.
Without loss of generality, assume that f is positive somewhere. Since f is continuous, the Extreme Value Theorem says that f attains its maximum value $f(c)$ for some $c \in(a, b)$. Note that $c \neq a, b$ since f is positive somewhere.
Let $h \neq 0$ be small so that $c+h \in[a, b]$. Then $f(c+h)-f(c) \leq 0$ since $f(c)$ is the absolute maximum value of f. But then

$$
\frac{f(c+h)-f(c)}{h} \quad \begin{cases}\leq 0 & \text { if } h>0 \tag{†}\\ \geq 0 & \text { if } h<0\end{cases}
$$

Since f is differentiable, we note that

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}
$$

is equal to both the left and right limits of (t) at $h=0$. However the right limit is necessarily ≤ 0 and the left limit ≥ 0. It follows that $f^{\prime}(c)=0$.

Corollary. If f is a differentiable function, then between every pair of solutions to $f(x)=0$ there is a solution to $f^{\prime}(x)=0$.

Example $f(x)=x(x-1)(x-2)$ has three roots, $x=0, \pm 1$. The Corollary says that $f^{\prime}(x)=0$ has at least two roots. In this case we may solve explicitly:

$$
\begin{aligned}
& f(x)=x^{3}-3 x^{2}+2 x \Longrightarrow f^{\prime}(x)=3 x^{2}-6 x+2 \\
& f^{\prime}(x)=0 \Longleftrightarrow x=\frac{6 \pm \sqrt{6^{2}-4 \cdot 3 \cdot 2}}{2 \cdot 3}=1 \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

We can combine the Mean Value and Intermediate Value Theorems to tell us precisely how many roots a particular equation has.

Example If $f(x)=x^{4}-4 x-8$, how many roots has the equation $f(x)=0$?
First differentiate:

$$
f^{\prime}(x)=4 x^{3}-4
$$

$f^{\prime}(x)=0$ has only one root, $x=1$. By the Corollary, $f(x)=$ 0 has at most two roots.

Now we apply the Intermediate Value Theorem.

$$
f(0)=-8<0<16=f(-2) \Longrightarrow \text { there is a root } \xi \text { satisfying }-2<\xi<0
$$

A second application of the Theorem, or simply spotting that $f(2)=0$, shows that $f(x)=0$ has at least two roots.
Combining the steps, we conclude that $x^{4}-4 x-8=0$ has exactly two roots.

The Mean Value Theorem proper, is simply Rolle's Theorem on a constant slope. It can be summarized as:

Average slope of $f=$ instantaneous slope somewhere.

Theorem (Mean Value). Suppose that f is continuous on $[a, b]$ and differentiable on (a, b). Then there exists some $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Proof. Let $g(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)$.
g satisfies the hypotheses of Rolle's Theorem $(g(a)=g(b)=0)$ and so there exists $c \in(a, b)$ with $g^{\prime}(c)=0$. But then

$$
0=g^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}
$$

which is the result.

Example Find all the possible values $x=c$ satisfying the Mean Value Theorem on the interval $[-2,6]$ for

$$
f(x)=\frac{1}{4} x^{4}-2 x^{3}+4 x^{2}+x
$$

We have

$$
f^{\prime}(x)=x^{3}-6 x^{2}+8 x+1
$$

whence $f(-2)=34$ and $f(6)=42$. The average slope is therefore

$$
\frac{f(6)-f(-2)}{6-(-2)}=1
$$

We must therefore solve $f^{\prime}(c)=1$. But this is if and only if

$$
0=c\left(c^{2}-6 c+8\right)=c(c-2)(c-4)
$$

whence $c=0,2$, or 4 .

How Many Functions have the same Derivative? One of the reasons that the Mean Value Theorem is so important to calculus is the fact that it answers the above question.
Theorem. If $f^{\prime}(x)=g^{\prime}(x)$ on some interval I, then $f(x)-g(x)$ is constant on I.
Proof. Let $h(x)=f(x)-g(x)$ and let $a<b$ in I. h satisfies the Mean Value Theorem on $[a, b]$, hence there exists $c \in(a, b)$ with

$$
\frac{h(b)-h(a)}{b-a}=h^{\prime}(c)=f^{\prime}(c)-g^{\prime}(c)=0
$$

But then $h(b)=h(a)$ for all $a, b \in I$. Hence h is constant on I.

Example Find all functions $f(x)$ such that $f^{\prime}(x)=\cos x+2 x$ for all $x \in \mathbb{R}$.
We know that $\frac{\mathrm{d}}{\mathrm{d} x}\left(\sin x+x^{2}\right)=\cos x+2 x$, thus $f(x)$ must have the form $f(x)=\sin x+x^{2}+C$ for some constant C.
Corollary. $f^{\prime}=0$ on an interval $\Longrightarrow f$ constant.

Homework

In each case below, sketch and come up with a formula of an example function which fails to satisfy the conclusion of the Mean Value Theorem. That is for which there are no values of $c \in(a, b)$ satisfying

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

1. f is not continuous on $[a, b]$ but is differentiable on (a, b).
2. f is continuous on $[a, b]$ but isn't differentiable on (a, b).
