
11 Infinite Sequences and Series

11.1 Sequences

Definition. A sequence is an ordered list of numbers. To denote the entire sequence we use either of
the notations

(an)
∞
n=1 or {an}∞

n=1

When it is unambiguous, we will simply write (an). In this course, all our sequences are infinite, and
have an initial term. We refer to an as the nth term of the sequence.

Examples

1. For example, the sequence (1, 3, 5, 7, 9, 11, . . .) has nth term an = 2n− 1.

2. Another example is the sequence

(an)
∞
n=1 = (1, 3, 7, 15, 31, 63, 127, . . .) with nth term an = 2n − 1

3. We can also plot sequences, just as if they are functions1 For example, the sequence with nth
term an = 1 + (−1)n

n is plotted below.
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an
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n

In the picture it seems clear that the values an get closer to 1, the larger n gets. This leads
immediately to. . .

Definition. A sequence (an) has limit L, and we write

lim
n→∞

an = L

if we can force the values an to be as close as we like to L simply by choosing n to be large enough.2

We say that (an) converges if there exists a limit, and diverges otherwise.

If should be clear that, as n → ∞, we have that 1
n approaches zero. If an = 1 + (−1)n

n as in our
example above, we immediately have

lim
n→∞

an = 1

1Indeed an alternative definition of a sequence is as a function whose domain is the natural numbers.
2A precise definition requires a strict idea of what ‘close’ means. See below.
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More generally, if we can view a sequence in the form an = f (n), where f is continuous, then

lim
n→∞

an = lim
x→∞

f (x)

All of the usual limit rules apply. In particular, if f happens to be differentiable, we may combine
this with l’Hôpital’s rule.

Examples

1. Let an = ne−2n. Then

lim
n→∞

an = lim
x→∞

xe−2x = lim
x→∞

x
e2x

is an indeterminate form of type ∞
∞ . Applying l’Hôpital’s rule yields

lim
n→∞

an = lim
x→∞

1
2e2x = 0

2. The sequence with nth term an = 2n − 1 increases unboundedly as n increases. Therefore (an)
diverges. In this case we would write

lim
n→∞

an = +∞

and say that the sequence diverges to infinity.

3. The sequence an = (−1)n simply repeats the val-
ues ±1: that is

(an)
∞
n=1 = (−1, 1,−1, 1,−1, 1, . . .)

These values are not getting closer to anything, so
the sequence (an) diverges. In this case we would
write −1

0

1an

2 4 6 8 10
n

lim
n→∞

an = DNE

and say that the sequence diverges by oscillation.

4. A geometric sequence is a sequence whose successive terms have a constant ratio r. Any such
sequence has nth term an = arn where a and r are constants. For the sake of this example, we
assume that a = 0, and consider how the limit of the sequence (rn) depends on r.
It should be clear that if −1 < r < 1, then the sequence (r, r2, r3, r4, . . .) is getting closer to zero.
Indeed, with a little thinking you should be convinced of the following:

lim
n→∞

rn =





DNE if r ≤ −1
0 if − 1 < r < 1
1 if r = 1
∞ if r > 1

In particular, (rn) converges ⇐⇒ −1 < r ≤ 1.

0
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n
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1
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(
−1

2

)n
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Comparing Sequences and showing the existence of limits

One of the purposes of sequences is to understand how process behave over long periods. A key idea
is the ability to compare a complicated sequence to one which we understand completely, such as a
geometric sequence (above). The first important result in this regard is the Squeeze Theorem, which
is exactly analogous to the corresponding theorem for functions.

Theorem (Squeeze). Suppose that (an), (bn)
and (cn) are sequences which satisfy the follow-
ing properties.

• For all n we have an ≤ cn ≤ bn.

• lim
n→∞

an = L = lim
n→∞

bn.

Then (cn) also converges to L.

2 4 6 8 10 12 14 16 18 20
n

an

bn

cn

L

Essentially we are saying that (cn) is squeezed between the sequences (an), (bn) which, since they are
both approaching the same limit L, forces (cn) to also approach L.

Example Since −1 ≤ sin n ≤ 1, the sequence with nth term cn = sin n
n is easily seen to satisfy

− 1
n
≤ sin n

n
≤ 1

n

Since the left and right sides of this inequality both converge to zero, the squeeze theorem says that

lim
n→∞

sin n
n

= 0

Most real-world problems cannot be solved exactly. For instance, when confronted with a se-
quence, one often needs to know that there is a limit before trying to find or approximate it. We
therefore want to obtain properties of sequence which might tell us that a limit exists without com-
puting it explicitly.

Definition. A sequence (an) is non-decreasing or monotone-up if

m > n =⇒ am ≥ an

(an) is non-increasing or monotone-down if m > n =⇒ am ≤ an.
A sequence is monotone if it is either monotone down or up.
A sequence (an) is bounded above if all values of the sequence are less than or equal to some value.
That is, if there exists some constant M for which

an ≤ M for all n

A sequence is bounded below similarly. A bounded sequence is one which is bounded both above and
below.

3



Theorem (Monotone Convergence). Every bounded monotone sequence is convergent.

The theorem is also true for monotone-up
sequences which are bounded above, and
for monotone-down sequences which are
bounded below. Imagine a bumble-bee
which never fliers lower than it currently is,
but is trapped in a room below the ceiling. As
time goes on, the bee’s height must approach
something which is less than or equal to the
ceiling.

2 4 6 8 10 12 14 16 18 20
n

an = 2 − 4
n

2
M

For example, the sequence an = 2− 4
n is monotone-up and bounded above by M = 2.4 (or indeed by

any M ≥ 2). The theorem says that this sequence must converge. Of course we know that lim an = 2
already, so the theorem is not useful for this example!

Advanced: The Monotone Convergence Theorem in Practice The use of the monotone conver-
gence theorem is difficult in practice, since we are likely to be working with a sequence where the
limit is not obvious. Consider the following sequence, defined inductively.

Let a1 = 2 and define an+1 =
an

2
+

1
an

for each n = 1, 2, 3, 4, . . .

The first few terms of the sequence are

(an) = (2, 3
2 , 17

12 , 577
408 , 665857

470832 , . . .)

The sequence appears to be decreasing. If we can prove this, and that it is bounded below, then we
will know that it converges. Unfortunately, proving these things requires a little creativity!

Bounded Below First notice that all terms of the sequence must be positive. Now observe that

a2
n+1 =

(
an

2
+

1
an

)2

=
a2

n
4

+ 1 +
1
a2

n
=

(
an

2
− 1

an

)2

+ 2

It follows that an+1 >
√

2 and so (an) is bounded below by
√

2.

Monotone-down Observe that

an+1 − an =
1
an
− an

2
=

2− a2
n

2an
< 0

since an >
√

2. Therefore (an) is a monotone-down sequence.

The theorem now says that the sequence has a limit L = lim
n→∞

an. Armed with this knowledge we can

actually compute L:

lim
n→∞

an+1 = lim
n→∞

an

2
+

1
an

=⇒ L =
L
2
+

1
L

=⇒ L2 = 2 =⇒ L = ±
√

2

However, all the terms of the sequence are positive, so the limit cannot be negative. We conclude that
an →

√
2.
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This sequence, and others like it have been used for thousands of years to obtain approximations
to irrational numbers. Note that we really needed to show the existence of the limit before trying to
calculate it. For example, naı̈vely substituting L = lim

n→∞
bn into the sequence defined by

b2 = 2, bn+1 =
3bn

2
− 1

bn

also yields the equation L2 = 2. However, this sequence diverges to infinity!

Advanced: The Precise Definition of a Limit

Definition. We say that lim
n→∞

an = L if, for each ε > 0 there exists some N such that

n > N =⇒ |an − L| < ε

This definition formalises the notion of ‘close to’ in the naı̈ve definition of limit. The idea is that
an is close to L if the difference between them is no more than some small value ε. The definition is
saying that, regardless of how close (ε) we want the sequence to be to its limit, we are always able to
find a tail of the sequence (all the terms after some aN) closer to the limit than ε. The clickable picture
below gives the idea: certainly, as we choose ε to be smaller, we are required to let N be larger so that
the orange tail remains closer to L than ε.

Working directly with this definition is beyond the level of this course. Becoming comfortable with
it is a critical part of upper-division mathematics.

Suggested problems

1. Determine whether each of the following sequences converges. It if does, find the limit.
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(a) an = n−2 + 2−n

(b) an = (−1)n
(

1 +
1
n

)

(c) an = cos(n−1)

2. Find the limit of the following sequences. Show your working.

(a) an =
sin(n2)

n3 .

(b) an = n2e−2n.

3. A sequence is defined by the recurrence relation an+1 =
1
3
(an + 4) together with a0 = 1.

(a) Suppose that x < 2. Show that 1
3 (x + 4) < 2.

(b) Use part (a) to show that (an) is bounded above.

(c) Show that (an) is increasing.

(d) By parts (a) and (b), and the monotone convergence theorem, (an) is convergent. What is
it’s limit?

6


	Infinite Sequences and Series
	Sequences


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	anm0: 


