
11.3 The Integral Test and Estimates of Sums

Much of the discussion of series involves methods or tests which may be applied to see if a series
converges or diverges. Each test applies to different types of series and has different advantages and
disadvantages. The integral test is our second of these (after the nth-term test). It formalizes the
intuitive idea that integrals, being defined using limits of sums, should behave similarly to infinite
series.

Consider the picture below. The graph of a decreasing, positive function f is drawn, where f has
domain [1, ∞). The sequence (an)∞

n=1 is defined by an = f (n).
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Notice that each of the rectangles has base 1 and height equal to one of the values ai of the sequence.
The areas of the rectangles are therefore equal to values of the sequence. In particular:

Green Rectangles The first has area a2, and the last area an. Since all the rectangles lie below the
curve y = f (x) it is immediate that

n

∑
i=2

ai ≤
∫ n

1
f (x)dx (∗)

Blue Rectangles The first has area a1, and the last area an. Since the curbe y = f (x) lies within the
rectangles, we have

∫ n+1

1
f (x)dx ≤

n

∑
i=1

ai

Adding a1 to both sides of (∗) and taking the limit as n→ ∞, we have proved the following:
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Theorem (Integral Test). Suppose that f is a non-increasing, continuous, positive-valued function on the
domain [1, ∞). Then, for all n = 1, 2, 3, 4, . . ., we have∫ n+1

1
f (x)dx ≤

n

∑
i=1

ai ≤ a1 +
∫ n

1
f (x)dx

Moreover,
∞
∑

n=1
an converges if and only if the improper integral

∫ ∞
1 f (x)dx converges. In particular, if the

infinite series converges, then∫ ∞

1
f (x)dx ≤

∞

∑
n=1

an ≤ a1 +
∫ ∞

1
f (x)dx

As with other tests, the initial term does not matter, we use n = 1 for brevity.

Examples

1. To test the series
∞
∑

n=1

1
n2 + 1

we consider the function

f (x) =
1

x2 + 1

This is certainly continuous, and decreasing on the interval [1, ∞). Moreover∫ ∞

1
f (x)dx = tan−1 x

∣∣∣→∞

1
=

π

2
− π

4
=

π

4

It follows that
∞
∑

n=1

1
n2 + 1

converges and that its value satisfies

π

4
≤

∞

∑
n=1

1
n2 + 1

≤ 1
2
+

π

4

2. The function f (x) = x
x2+1 has derivative f ′(x) = 1−x2

(x2+1)2 which is negative for x > 1. Thus f is
continuous and decreasing, whence we can apply the integral test. Since∫ ∞

1
f (x)dx =

1
2

ln(x2 + 1)
∣∣∣→∞

1
= +∞

we conclude that the infinite series diverges.

p-series

The p-series are a family of infinite series. Together with the geometric series, they form the standard
collection of series against which other, more complex, series may be compared.1 For p > 0 constant,
we consider the infinite series

∞

∑
n=1

1
np

1I.e. using the comparison, ratio and root tests (later).
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If p = 1 this is the harmonic series. Certainly the sequence defined by an = 1
np is decreasing. Recall

our computation of the following indefinite integrals:∫ ∞

1

1
xp dx =

{
1

p−1 if p > 1,

+∞ if p ≤ 1

Applying the integral test, we see that we have proved the following:

Theorem (Convergence of p-series). Let p > 0 be constant. The the p-series
∞
∑

n=1

1
np converges if and only

if p > 1. Moreover, in such a case,

1
p− 1

≤
∞

∑
n=1

1
np ≤

p
p− 1

In particular, the harmonic series
∞
∑

n=1

1
n is divergent, while, if p = 2, we have

1 ≤
∞

∑
n=1

1
n2 ≤ 2

Estimates of the growth rate of the harmonic series

Even though the harmonic series
∞
∑

n=1

1
n diverges to infinity, we as ask how rapidly it does this. For

example, how many terms of the series are required before the partial sum sn =
n
∑

i=1

1
i exceeds 100?

According to the integral test,

ln(n + 1) =
∫ n+1

1

1
x

dx ≤ sn ≤ 1 +
∫ n

1

1
x

dx = 1 + ln n

It follows that if sn is to exceed 100, we certainly require

100 ≤ 1 + ln n ⇐⇒ n ≥ e99 ≈ 9.889× 1042

Moreover, sn is guaranteed to exceed 100 if

100 ≤ ln(n + 1) ⇐⇒ n ≤ e100 − 1 ≈ 2.688× 1043

This is only an estimate, but the estimate is sickeningly large!

Suggested problems

1. Use the integral test to show that
∞

∑
n=1

1
n2 + 9

converges.

2. Show that the series
∞

∑
k=1

ke−k2
satisfies the hypotheses of the integral test. Does it converge?

3. (Hard) For which values of p does the series
∞

∑
n=2

ln n
np converge? Justify your answer using the

integral test.
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