11.3 The Integral Test and Estimates of Sums

Much of the discussion of series involves methods or tests which may be applied to see if a series converges or diverges. Each test applies to different types of series and has different advantages and disadvantages. The integral test is our second of these (after the n th-term test). It formalizes the intuitive idea that integrals, being defined using limits of sums, should behave similarly to infinite series.

Consider the picture below. The graph of a decreasing, positive function f is drawn, where f has domain $[1, \infty)$. The sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is defined by $a_{n}=f(n)$.

Notice that each of the rectangles has base 1 and height equal to one of the values a_{i} of the sequence. The areas of the rectangles are therefore equal to values of the sequence. In particular:

Green Rectangles The first has area a_{2}, and the last area a_{n}. Since all the rectangles lie below the curve $y=f(x)$ it is immediate that

$$
\begin{equation*}
\sum_{i=2}^{n} a_{i} \leq \int_{1}^{n} f(x) \mathrm{d} x \tag{*}
\end{equation*}
$$

Blue Rectangles The first has area a_{1}, and the last area a_{n}. Since the curbe $y=f(x)$ lies within the rectangles, we have

$$
\int_{1}^{n+1} f(x) \mathrm{d} x \leq \sum_{i=1}^{n} a_{i}
$$

Adding a_{1} to both sides of $(*)$ and taking the limit as $n \rightarrow \infty$, we have proved the following:

Theorem (Integral Test). Suppose that f is a non-increasing, continuous, positive-valued function on the domain $[1, \infty)$. Then, for all $n=1,2,3,4, \ldots$, we have

$$
\int_{1}^{n+1} f(x) \mathrm{d} x \leq \sum_{i=1}^{n} a_{i} \leq a_{1}+\int_{1}^{n} f(x) \mathrm{d} x
$$

Moreover, $\sum_{n=1}^{\infty} a_{n}$ converges if and only if the improper integral $\int_{1}^{\infty} f(x) \mathrm{d} x$ converges. In particular, if the infinite series converges, then

$$
\int_{1}^{\infty} f(x) \mathrm{d} x \leq \sum_{n=1}^{\infty} a_{n} \leq a_{1}+\int_{1}^{\infty} f(x) \mathrm{d} x
$$

As with other tests, the initial term does not matter, we use $n=1$ for brevity.

Examples

1. To test the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ we consider the function

$$
f(x)=\frac{1}{x^{2}+1}
$$

This is certainly continuous, and decreasing on the interval $[1, \infty)$. Moreover

$$
\int_{1}^{\infty} f(x) \mathrm{d} x=\left.\tan ^{-1} x\right|_{1} ^{\rightarrow \infty}=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
$$

It follows that $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ converges and that its value satisfies

$$
\frac{\pi}{4} \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}+1} \leq \frac{1}{2}+\frac{\pi}{4}
$$

2. The function $f(x)=\frac{x}{x^{2}+1}$ has derivative $f^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}$ which is negative for $x>1$. Thus f is continuous and decreasing, whence we can apply the integral test. Since

$$
\int_{1}^{\infty} f(x) \mathrm{d} x=\left.\frac{1}{2} \ln \left(x^{2}+1\right)\right|_{1} ^{\rightarrow \infty}=+\infty
$$

we conclude that the infinite series diverges.

p-series

The p-series are a family of infinite series. Together with the geometric series, they form the standard collection of series against which other, more complex, series may be compared ${ }^{1}$ For $p>0$ constant, we consider the infinite series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

[^0]If $p=1$ this is the harmonic series. Certainly the sequence defined by $a_{n}=\frac{1}{n^{p}}$ is decreasing. Recall our computation of the following indefinite integrals:

$$
\int_{1}^{\infty} \frac{1}{x^{p}} \mathrm{~d} x= \begin{cases}\frac{1}{p-1} & \text { if } p>1 \\ +\infty & \text { if } p \leq 1\end{cases}
$$

Applying the integral test, we see that we have proved the following:
Theorem (Convergence of p-series). Let $p>0$ be constant. The the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if and only if $p>1$. Moreover, in such a case,

$$
\frac{1}{p-1} \leq \sum_{n=1}^{\infty} \frac{1}{n^{p}} \leq \frac{p}{p-1}
$$

In particular, the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, while, if $p=2$, we have

$$
1 \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}} \leq 2
$$

Estimates of the growth rate of the harmonic series

Even though the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges to infinity, we as ask how rapidly it does this. For example, how many terms of the series are required before the partial sum $s_{n}=\sum_{i=1}^{n} \frac{1}{i}$ exceeds 100?
According to the integral test,

$$
\ln (n+1)=\int_{1}^{n+1} \frac{1}{x} \mathrm{~d} x \leq s_{n} \leq 1+\int_{1}^{n} \frac{1}{x} \mathrm{~d} x=1+\ln n
$$

It follows that if s_{n} is to exceed 100, we certainly require

$$
100 \leq 1+\ln n \Longleftrightarrow n \geq e^{99} \approx 9.889 \times 10^{42}
$$

Moreover, s_{n} is guaranteed to exceed 100 if

$$
100 \leq \ln (n+1) \Longleftrightarrow n \leq e^{100}-1 \approx 2.688 \times 10^{43}
$$

This is only an estimate, but the estimate is sickeningly large!

Suggested problems

1. Use the integral test to show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}+9}$ converges.
2. Show that the series $\sum_{k=1}^{\infty} k e^{-k^{2}}$ satisfies the hypotheses of the integral test. Does it converge?
3. (Hard) For which values of p does the series $\sum_{n=2}^{\infty} \frac{\ln n}{n^{p}}$ converge? Justify your answer using the integral test.

[^0]: ${ }^{1}$ I.e. using the comparison, ratio and root tests (later).

