
11.4 The Comparison Tests

The Comparison Test works, very simply, by comparing the series you wish to understand with one
that you already understand. While it has the widest application of any of the series tests, and is the
test on which all the remaining series tests are based, it is also the most difficult to use, given that it
requires you to make an educated guess and sometimes requires significant creativity.

Theorem (Comparison test). Suppose that ∑ an and ∑ bn are series of positive terms, such that an ≤ bn for
all (sufficiently large) n. Then:

• If ∑ bn converges, so does ∑ an.

• If ∑ an diverges, so does ∑ bn.

The proof relies on the monotone convergence theorem.

Proof. Suppose, for ease of notation that 1 ≤ n < ∞, and that 0 < an ≤ bn. Since ∑ an and ∑ bn are
series of positive terms, they must either converge, or diverge to +∞. If

sn =
n

∑
i=1

ai and tn =
n

∑
i=1

bi

are the terms of the sequences of partial sums, then, being sums of finitely many positive terms, it is
immediate that

0 < sn ≤ tn < ∞

and that the sequences (sn) and (tn) are both increasing.

• Suppose first that ∑ bn = b converges. Then lim
n→∞

tn = b. It follows that (sn) is an increasing

sequence, bounded above by b. Therefore (sn) converges and so does ∑ an.

• Instead suppose that ∑ an = ∞ diverges. Then lim
n→∞

sn = +∞. It follows that lim
n→∞

tn = +∞,

whence ∑ bn diverges.

It is straightforward, though notationally messy to modify the proof to deal with an ≤ bn for ‘suffi-
ciently large’ n.

The most important thing about the comparison test is having a dictionary of well-understood
series with which you can compare. The standards are:

Geometric Series ∑ rn converges if and only if −1 < r < 1.

p-Series ∑ 1
np converges if and only if p > 1.
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Examples

1. It is clear that n2 + 3n + 2 ≥ n2 for all n ≥ 1, whence

∞

∑
n=1

1
n2 + 3n + 2

≤
∞

∑
n=1

1
n2

Since the right hand side is a convergent p-series, it follows that
∞
∑

n=1

1
n2+3n+2 converges.

2. Sometimes it is harder to see a suitable comparison. For example
√

n + 1
2n3/2 − 1

≥
√

n
2n3/2 − 1

≥
√

n
2n3/2 =

1
2n

Since ∑ 1
n is a divergent p-series, it follows that

∞

∑
n=1

√
n

2n3/2 − 1
= +∞

In general it can be very difficult to find a suitable series for comparison. A subtle change to the first
example above makes this clear. Consider the series

∞

∑
n=2

1
n2 − 3n + 2

where we start the sum at n = 2 to make sure that all terms are positive and we are not dividing by
zero. We should believe that this series converges, since it still looks similar to ∑ 1

n
2
, however

1
n2 − 3n + 2

is not less than
1
n2

so we have to proceed differently. In this case we could say

1
n2 − 3n + 2

=
1

(n− 2)(n− 1)
≤ 1

(n− 1)2

whence
∞

∑
n=2

1
n2 − 3n + 2

≤
∞

∑
n=2

1
(n− 1)2 =

∞

∑
m=1

1
m2

which converges. Thankfully, this algebraic trickery can often be avoided by appealing to a more
user-friendly result.

Theorem (Limit Comparison Test). Suppose that (an) and (bn) are series of positive terms and consider the
limit c = lim

n→∞
an
bn

, if it exists.
If c 6= 0 and c 6= ∞, then either both ∑ an and ∑ bn converge, or both diverge.

The basic idea for applying the limit comparison test to a series ∑ an is to imagine the terms an when
n is very large and to choose bn to be something simple which looks a bit like an. This is easiest to
understand through examples.
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Examples

1. The limit comparison test makes our previous example much easier. When n is very large,
n2 − 3n + 2 is not very different1 to n2. With reciprocals, the difference between 1

n2−3n+2 and 1
n2

is miniscule. If an = 1
n2−3n+2 , we therefore compare to bn = 1

n2 . Since

c = lim
n→∞

an

bn
= lim

n→∞

n2

n2 − 3n + 2
= 1

and ∑ 1
n2 converges, it follows from the limit comparison test that ∑ an converges.

2. When n is large, (n+2)3n

(2n+1)4n behaves a bit like
( 3

4

)n. Indeed

lim
n→∞

(n+2)3n

(2n+1)4n( 3
4

)n = lim
n→∞

n + 2
2n + 1

=
1
2

Since ∑
( 3

4

)n is a convergent geometric series, by the limit comparison test we conclude that

∑ (n+2)3n

(2n+1)4n also converges.

3. If an = (1 + 1
n )

2e−n, then we compare with bn = e−n. Then

lim
n→∞

an

bn
= lim

n→∞
(1 +

1
n
)2 = 1

Since ∑ e−n = ∑(e−1)n is a convergent geometric series, we conclude that ∑ an converges.

4. Suppose we want to decide on the convergence or divergence of ∑ an = ∑ sin 1
n . Think about

what happens when n is large: clearly 1
n is small. Recalling that

lim
x→0+

sin x
x

= 1

we see that sin 1
n ≈

1
n for large n. This motivates us to compare with ∑ bn = ∑ 1

n . Indeed

c = lim
n→∞

an

bn
= lim

n→∞

sin 1
n

1
n

= lim
x→0+

sin x
x

= 1 (let x = 1
n )

Since ∑ 1
n diverges, we conclude that ∑ sin 1

n also diverges.

5. Don’t simply jump straight for the limit comparison test. If ∑ an = ∑ 3n

n·2n , then there are two
obvious divergent series we could compare with:, namely ∑ bn = ∑

( 3
2

)n or ∑ dn = ∑ 1
n . Ap-

plying the limit comparison test with each of these yields

lim
an

bn
= 0 and lim

an

dn
= ∞

A modified version of the limit comparison test is given below, which allows for limits being 0
or ∞. However it is much easier to simply observe that

3n

n · 2n ≥
1
n

=⇒ ∑
3n

n · 2n ≥∑
1
n
= ∞

so that our original series diverges. This is just the (original) comparison test.
1If n = 1000, n2 − 3n + 2 and n2 differ by 2998. This seems large, but is small in comparison to n2. Indeed, $2,998 might

seem like a lot of money, but how much would it matter to you if someone handed you $1,000,000?
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Advanced: The proof, and modifications of the Limit Comparison Test The proof of the limit
comparison test intuitively comes from the following idea: if 0 < c < ∞, then, for sufficiently large
n, we have that an ≈ cbn, and so ∑ an ≈ c ∑ bn. To be precise, we have to use the ε-definition of limit.

Proof. If 0 < c < ∞, then we may choose ε = c
2 in the definition of limit. It follows that there exists a

value N and bounds for which

n > N =⇒ c− ε <
an

bn
< c + ε =⇒ c

2
<

an

bn
<

3c
2

=⇒ c
2

bn < an <
3c
2

bn

Applying the comparison test, we see that, we have

c
2

∞

∑
n=N+1

bn ≤
∞

∑
n=N+1

an ≤
3c
2

∞

∑
n=N+1

bn

Clearly both ∑ an and ∑ bn converge, or both diverge.

Since, for the limit comparison test, (an) and (bn) are sequences of positive terms, it is possible
that c = 0 or c = ∞.

• If c = 0 then, for large n the relation an ≤ bn holds, and the original conclusion of the compari-
son test applies.

– If ∑ bn converges, so does ∑ an.
– If ∑ an diverges, so does ∑ bn.

• If c = ∞ then, for large n the relation an ≥ bn holds, and a reversed conclusion of the compari-
son test applies.

– If ∑ an converges, so does ∑ bn.
– If ∑ bn diverges, so does ∑ an.

It is unwise to attempt to memorize all of these possibilities. Instead, try to understand what the
relationship an ≤ bn means for how the convergence/divergence of ∑ an and ∑ bn must relate.

Suggested problems

1. Use a comparison test to decide whether the folowing series converge.

(a)
∞

∑
n=3

2n

n + 3n .

(b)
∞

∑
j=2

(1 + j−2) · 4−j.

2. Does the series
∞

∑
n=1

√
1 + n

3 + 2n2 converge. Explain.

3. Suppose that ∑ an is a series of positive terms. Prove that ∑ a2
n converges. (Hint: Why is there a

value N for which n > N ⇒ 0 < an < 1? Now apply a comparison. . . )
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