11.5 Alternating Series

An alternating sequence is a sequence whose terms alternate between positive and negative. Often such sequences are written in the form

$$
a_{n}=(-1)^{n} b_{n} \quad \text { or } \quad a_{n}=(-1)^{n+1} b_{n}
$$

where $\left(b_{n}\right)$ is a sequence of positive terms, although sometimes they are somewhat disguised. An alternating series is the sum of an alternating sequence. For example,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\cdots
$$

is the alternating harmonic series.
The alternating series test is a convergence test which may be applied to alternating series. It is very easy to use.
Theorem (Alternating Series Test). Suppose that $\left(b_{n}\right)$ is a decreasing sequence of positive values with limit zero. Then the alternating series $\sum(-1)^{n} b_{n}$ converges.
Like the other series tests, it does not matter which value of n denotes the initial term. As long as a series is alternating and decreasing, then it will converge. Just make sure that you observe all these facts when using the alternating series test.

Examples

1. The alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is certainly alternating, and the sequence $\left(\frac{1}{n}\right)$ decreases with limit zero. The test applies and so the series converges.
2. Consider the series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} e^{-\left(n^{2}+7 n-2\right)}
$$

Since the exponential term is always positive, this is certainly an alternating series. We should check that the exponential term is decreasing. For this, compute the derivative

$$
\frac{\mathrm{d}}{\mathrm{~d} x} e^{-\left(x^{2}+7 x-2\right)}=(-2 x-7) e^{-\left(x^{2}+7 x-2\right)}<0 \quad \text { whenever } \quad x \geq 1
$$

It follows that the alternating series test applies, and so the series converges.
3. Similarly, the series

$$
\sum_{n=3}^{\infty} \frac{(-1)^{n}\left(n^{2}+n\right)}{e^{n}}
$$

is alternating and, since

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\left(x^{2}+x\right)}{e^{x}}=\frac{(2 x+1) e^{x}-\left(x^{2}+x\right) e^{x}}{e^{2 x}}=\frac{2 x+1-x^{2}+x}{e^{x}}=\frac{-x(x-3)-1}{e^{x}}<0
$$

if $x \geq 3$, the alternating series test applies.
4. Be careful! Not all alternating series converge!

$$
\sum_{n=1}^{\infty}(-1)^{n-1} \sqrt{1+\frac{2}{n}}
$$

is alternating, and $b_{n}=\sqrt{1+\frac{2}{n}}$ is decreasing. The series does not converge, since b_{n} does not converge to zero (nth term/divergence test).

Advanced: estimates of alternating series

If you read the proof of the alternating series test (below) you may be able to convince yourself of the following:

Theorem. If $s=\sum(-1)^{n-1} b_{n}$ is a convergent alternating series, then the nth partial sum s_{n} is at most a distance b_{n+1} from the value s of the series. That is

$$
\left|s-s_{n}\right| \leq b_{n+1}
$$

This result is mostly of academic interest, for alternating series typically converge to their limits very slowly...

Example It can be shown that the infinite series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{1+2 n}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots
$$

converges to $s=\frac{\pi}{4}$. How many terms would we need to sum in order to be sure that s_{n} is an approximation to s which is correct to 2 decimal places? To guarantee this, we solve

$$
\left|s-s_{n}\right| \leq b_{n+1}<0.01 \Longrightarrow \frac{1}{1+2 n}<\frac{1}{100} \Longrightarrow n>49.5
$$

Advanced: proving the alternating series test

Like many similar proofs, this one relies on the monotone convergence theorem. We consider the sequence (s_{n}) of partial sums of a (decreasing) alternating series and show that half of this sequence (the even terms $\left(s_{2 m}\right)$) is decreasing and bounded below, while the other half $\left(s_{2 m+1}\right)$ is increasing and bounded above. Both halves converge. It remains to see that both halves converge to the same value. At all stages we need the fact that $a_{n}=(-1)^{n} b_{n}$ where b_{n} is a decreasing sequence.

Sketch Proof. For clarity, we assume that the series has the form $\sum_{n=0}^{\infty}(-1)^{n} b_{n}$ where $\left(b_{n}\right)$ is a sequence which decreases to zero.
Consider the sequence of partial sums $\left(s_{n}\right)$. Depending on whether n is even or odd, we have different expressions, whose terms may be grouped differently:

$$
n=2 m \text { even } \quad s_{2 m}=\sum_{i=0}^{2 m}(-1)^{i} b_{i}=b_{0}-\left(b_{1}-b_{2}\right)-\left(b_{3}-b_{4}\right)-\cdots-\left(b_{2 m-1}-b_{2 m}\right)
$$

$$
n=2 m+1 \text { odd } \quad s_{2 m+1}=\sum_{i=0}^{2 m+1}(-1)^{i} b_{i}=\left(b_{0}-b_{1}\right)+\left(b_{2}-b_{3}\right)+\cdots+\left(b_{2 m}-b_{2 m+1}\right)
$$

Since $\left(b_{n}\right)$ is decreasing, it follows that each of the bracketed terms above is positive. It follows that the subsequence $\left(s_{2 m}\right)$ is decreasing and that $\left(s_{2 m+1}\right)$ is increasing.
Moreover,

$$
\begin{aligned}
& s_{2 m}=\left(b_{0}-b_{1}\right)+\left(b_{2}-b_{3}\right)+\cdots+\left(b_{2 m-2}-b_{2 m-1}\right)+b_{2 m}>0 \\
& s_{2 m+1}=b_{0}-\left(b_{1}-b_{2}\right)-\left(b_{3}-b_{4}\right)-\cdots-\left(b_{2 m}-b_{2 m+1}\right)<b_{0}
\end{aligned}
$$

$\left(s_{2 m}\right)$ is decreasing and bounded below, while $\left(s_{2 m+1}\right)$ is increasing and bounded above. The monotone convergence theorem says that both subsequences converge.
Finally,

$$
s_{2 m+1}-s_{2 m}=-b_{2 m+1} \rightarrow 0
$$

so that both subsequences converge to the same limit.

Suggested problems

1. (a) Show that $\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k+\sqrt{k}}$ converges.
(b) Why doesn't the alternating series test apply to the series $\sum a_{j}$, where

$$
\left(a_{j}\right)=\left(1,-\frac{3}{2}, \frac{1}{3},-\frac{3}{4}, \frac{1}{5},-\frac{3}{6}, \frac{1}{7},-\frac{3}{8}, \frac{1}{9}, \ldots\right) ?
$$

2. Determine whether the following series converge.
(a) $\sum_{k=3}^{\infty} \frac{(-1)^{k}(k-1)}{k^{2}+2}$
(b) $\sum_{n=1}^{\infty}(-1)^{n+1} n^{1 / n}$
3. You are given that $\pi^{2}=\sum_{n=1}^{\infty} \frac{12(-1)^{n-1}}{n^{2}}$. How many terms of the series is it necessary to sum in order to approximate π^{2} to within 0.03 ? Use a calculator to do so, and check your answer with the calculator's value for π^{2}.
