
11.6 Absolute Convergence and the Ratio and Root Tests

The most common way to test for convergence is to ignore any positive or negative signs in a se-
ries, and simply test the corresponding series of positive terms. Does it seem reasonable that the
convergence of the series
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should say anything about whether the modified series (every third term is negative).
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converges? The fact that it does is somewhat remarkable. Before we understand this, we need to split
the notion of convergence into two cases.

Definition. A series ∑ an is absolutely convergent if ∑ |an| converges.
A series ∑ an is conditionally convergent if it converges but not absolutely.

Examples

1. The series ∑ (−1)n

n2 is absolutely convergent, since the p-series ∑ 1
n2 converges.

2. The alternating harmonic series ∑ (−1)n

n is conditionally convergent: it converges, but the har-
monic series ∑ 1

n diverges.

Theorem. If a series ∑ an is absolutely convergent then it is convergent.

Proof. We use the fact that an = (an + |an|)− |an|. It follows, for any sequence (an), that

0 ≤ an + |an| ≤ 2 |an|

Assuming that ∑ an is absolutely convergent (i.e. that ∑ |an| converges), we may apply the compari-
son test to see that

∑(an + |an|)

converges. It follows, by the series laws, that

∑ an = ∑(an + |an|)−∑ |an|

is convergent.

For a given series ∑ an, we have shown that exactly one of three things must be true:

• ∑ an is absolutely convergent.

• ∑ an is conditionally convergent.

• ∑ an is divergent.

The theorem allows us to apply any of the tests we’ve seen that require only positive terms to any
series. Such tests will only be able to show absolute convergence or divergence.
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Example Show that ∑ an = ∑ sin(n2)
n2 converges.

Since 0 ≤
∣∣sin(n2)

∣∣ ≤ 1, we observe that

|an| ≤
1
n2

hence ∑ |an| converges by the comparison test. It follows that ∑ an converges absolutely: in particular,
∑ an converges.

The Ratio Test

The ratio test is perhaps the easiest of the convergence tests to use, but it is also one of the most
likely to be inconclusive. It is particular useful for deciding on the convegence of series containing
exponential and factorial terms.

Theorem (Ratio Test). Let ∑ an be a series and let L = lim
n→∞

∣∣∣ an+1
an

∣∣∣, if it exists. There are three possibilities:

• If L < 1 then ∑ an is absolutely convergent

• If L > 1 then ∑ an is divergent

• If L = 1 then the ratio test is inconclusive

Sketch Proof. If L < 1 then r = 1+L
2 lies half way between L and 1. Taking ε = 1−L

2 in the definition of
limit, we see that, for n larger than some fixed N, we have

|an+1| ≤ r |an| =⇒ |an| ≤ |aN | rn−N

Now apply the comparison test to compare

∞

∑
n=N+1

|an| ≤ |aN | r−N
∞

∑
n=N+1

rn

which is a convergent geometric series. It follows that ∑ an is absolutely convergent.
If L > 1, then for sufficiently large n we have |an+1| ≥ |an|. It follows that the sequence (an) does not
converge to zero, whence the nth term/divergence test says that ∑ an diverges.

Examples

1. The ratio test is useless for series of rational expressions, as the limit will always be L = 1. Use
comparison test instead. For example, we know that

∑
1
n2 converges, and ∑

1
n

diverges.

The ratio test calculations in each case are

lim
n→∞

∣∣∣∣ 1/n2

1/(n + 1)2

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)2

n2

∣∣∣∣ = 1 and lim
n→∞

∣∣∣∣ 1/n
1/(n + 1)

∣∣∣∣ = 1
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2. If ∑ an = ∑ (−2)n

n! then

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−2)n+1 · n!
(n + 1)!(−2)n

∣∣∣∣ = lim
n→∞

2
n + 1

= 0

It follows that ∑ an is absolutely convergent.

3. The ratio test is useful when you want to ignore polynomials. For example, if ∑ an = ∑ 3n

n22n

then

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 3n+1 · n22n

(n + 1)22n+1 · 3n

∣∣∣∣ = lim
n→∞

3n2

2(n + 1)2 =
3
2

Note the irrelevance of the polynomial terms. Since 3
2 > 1 we conclude that ∑ an diverges.

4. This final, tougher, example requires you to recall a limit from earlier in your calculus career.1

If ∑ an = ∑ n!
nn then

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)! · nn

(n + 1)n+1 · n!

∣∣∣∣ = lim
n→∞

[
n

n + 1

]n

= lim
n→∞

1[
1 + 1

n

]n = e−1

Sine e−1 < 1 we conclude that ∑ an is (absolutely2) convergent.

The Root Test

The root test is very similar to the ratio test. In the abstract it is slightly more useful, although it is
typically less applicable to concrete series.

Theorem (Root Test). Let L = lim
n→∞

n
√
|an| = |an|1/n, if it exists. There are three possibilities, with the same

conclusions as the ratio test:

• If L < 1 then ∑ an is absolutely convergent

• If L > 1 then ∑ an is divergent

• If L = 1 then the root test is inconclusive

Sketch Proof. If L < 1 then |an| ≈ Ln for sufficiently large n. We now use the comparison test with the
convergent geometric series ∑ Ln.
If L > 1, then limn→∞ |an| = Ln > 1. In particular, the sequence (an) does not converge to zero, and
so the series diverges.

Because the root test involves taking nth roots, it is almost entirely useless! Unless a series is of
the form ∑(bn)n, it is very unlikely that the root test will be at all useful.

1 lim
n→∞

(
1 + x

n
)n

= ex.
2Since each an is positive, absolute convergence is the same as convergence.
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Examples

1. Consider ∑ an = ∑ 1
nn . Since

lim
n→∞
|an|1/n = lim

n→∞

∣∣∣∣( 1
n

)n∣∣∣∣1/n

= lim
n→∞

1
n
= 0

and 0 < 1, the root test quickly shows that ∑ 1
nn is (absolutely) convergent.

This example can also be easily done by comparison: if n ≥ 2, then

1
nn ≤

1
n2 =⇒

∞

∑
n=2

1
nn ≤

∞

∑
n=2

1
n2 which converges.

2. If ∑ an = ∑
( 1−n

2n+1

)n
, then we compute.

lim
n→∞
|an|1/n = lim

n→∞

∣∣∣∣ 1− n
2n + 1

∣∣∣∣ = lim
n→∞

n− 1
2n + 1

=
1
2

The root test shows that ∑ an is absolutely convergent.

3. Finally, another example using the limit definition of ex. If ∑ an = ∑
(
1− 1

n

)n2

, then

lim
n→∞
|an|1/n = lim

n→∞

(
1− 1

n

)n

= e−1 < 1

whence ∑ an is (absolutely) convergent. L = e−1 so convergent. Switch to + for counterexample.

To illustrate the proof of the root test for L > 1, consider modifying the last example. If ∑ bn =

∑
(
1 + 1

n

)n2

, the root test produces a limit

lim
n→∞
|bn|1/n = e > 1

whence ∑ bn diverges. However, it should be obvious that

bn =

(
1 +

1
n

)n2

> 1 =⇒ lim
n→∞

bn 6= 0

so the series ∑ bn diverges by the nth term/divergence test: the root test wasn’t needed at all!

Suggested problems

1. (a) Explain the difference between absolute and conditional convergence.

(b)
∞

∑
n=1

(−1)n−1

n2 converges. Is the convergence absolute or conditional? Explain your answer.

2. Use the Ratio or Root test to decide whether the following series converge.
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(a)
∞

∑
n=1

n23n

n!

(b) (Harder)
∞

∑
n=1

(
1− 2

n

)3n2

3. (a) Consider the series
∞

∑
n=1

(n!)2

(2n)!
. Use the ratio test to decide whether this series converges.

(b) Consider the following sequence:

an =

{
2−n if n odd
3−n if n even

i. Attempt to apply the root test to
∞

∑
n=1

an. What happens?

ii. Repeat (a) for the ratio test.

iii. Does
∞

∑
n=1

an converge? Prove it and, if it does, find its value.
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