
11.7 Strategy for Testing Series

Most questions related to series in this course are a rephrasing of the following:

Given a series ∑ an, decide if the series converges or diverges: if it converges, decide whether the series
converges absolutely or conditionally.

The challenge is to be able to quickly choose the most useful test, or combination of tests, to efficiently
answer the question. Sometimes several tests will apply. In large part, making the right choice is
something that comes with experience: here are some suggestions for the order in which to consider
each test, where the order is chosen to reflect the balance between applicability and ease of use.

1 nth term/divergence test

lim
n→∞

an 6= 0 =⇒ ∑ an divergent

The nth term test comes first because it is very easy and quick to use. Spend 10 seconds consid-
ering whether it applies; if it does, the question is over very quickly. The weakness in the nth
term test is that it can only show that a series ∑ an diverges. The test can never show that a series
converges.

2 Standard series, or a simple combination? You should know:

p-series: ∑ 1
np converges if and only if p > 1

Geometric series: ∑ rn converges if and only if −1 < r < 1

3 Test for Absolute Convergence You should consider the following tests for the series ∑ |an|.

(a) (Limit) Comparison Test Compare your series with something similar, but simpler. A
simplistic summary of the tests is as follows:

Comparison Test |an| ≤ |bn| =⇒ ∑ |an| ≤ ∑ |bn|
Limit Comparison Test If lim

n→∞
|an|
|bn| ∈ (0, ∞), then ∑ |an| and ∑ |bn| have the same con-

vergence status.

(b) Ratio Test Consider L = lim
n→∞

∣∣∣ an+1
an

∣∣∣. Absolute convergence if L < 1, divergence if

L > 1. Useful if series contains factorials and/or exponentials.

(c) Root Test Consider L = lim
n→∞
|an|1/n. Absolute convergence if L < 1, divergence if

L > 1. Useful if the nth term of the series is the nth power of something simple.

(d) Integral Test If |an| = f (n) is decreasing on [N, ∞) then

∞

∑
n=N
|an| converges ⇐⇒

∫ ∞

N
f (x)dx converges

The integral test is late in the list because it rarely applies since integration is difficult!

7 Alternating Series Test If an alternates between positive and negative, and |an| is decreasing
to zero, then ∑ an converges. This is the only test that can show conditional convergence. Useless
if any of the above tests show absolute convergence.
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Values of convergent series It is also possible to be asked to find the explicit value of a convergent
series. The only series for which you should know how to do this (at this stage) are:

Geometric Series with |r| < 1
∞

∑
n=0

rn =
1

1− r
or more generally

∞

∑
n=N

rn =
rN

1− r
which can be re-

membered as

∑ rn =
initial term

1− ratio of successive elements

Telescoping Series These are special series which may be written in such a fashion that most terms
of the series cancel. For example

n

∑
k=2

1√
k
− 1√

k + 1
=

1√
2
− 1√

3
+

1√
3
− 1√

4
+ · · ·+ 1√

n
− 1√

n + 1
=

1√
2
− 1√

n + 1

from which

∞

∑
n=2

1√
n
− 1√

n + 1
= lim

n→∞

1√
2
− 1√

n + 1
=

1√
2

You may need to use some algebraic trickery to put a series in telescoping form.

Examples For each of these, you should be able to run through the checklist in your head until

you reach something for which a calculation is merited. In parentheses
()

is the a typical thought
process: you don;t need to write down anything contained therein.

1.
∞

∑
n=2

e1/n

n2(
lim
n→∞

e1/n

n2 = 0, so the nth term test does not apply.

Not a p-series or geometric series.

However lim
n→∞

e1/n = 1, whence we consider a comparison with ∑ 1
n2 .
)

We compare with the convergent p-series
∞
∑

n=2

1
n2 .

lim
n→∞

e1/n/n2

1/n2 = lim
n→∞

e1/n = 1

By the limit comparison test, that
∞
∑

n=2

e1/n

n2 converges.

2.
∞

∑
n=3

cos(n2) is divergent by the nth term test, since cos(n2) is divergent (hence does not converge

to zero).
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3.
∞

∑
j=0

(−1)j
√

j
j + 5(

Sequence converges to zero, so nth term test does not apply.
Not a standard series, or combination thereof.
When j is large, ∑

∣∣aj
∣∣ looks like the divergent p-series ∑ j−1/2.

)
We compare with the divergent p-series

∞
∑

n=1

1
j1/2 . We have

lim
j→∞

√
j/(j + 5)
1/j1/2 =

j
j + 5

= 1

whence
∞
∑

j=1

√
j

j+5 diverges. Certainly the original series (summed from j = 0) does not converge

absolutely.1(
Remains to see if series conditionally converges.
Only test that can do this is the alternating series test.

Must check that sequence
√

j
j+5 decreases to zero.

)
Let f (x) =

√
x

x+5 . Then

f ′(x) =
1
2 x−1/2(x + 5)− x1/2

(x + 5)2 =
x + 5− 2x

2x1/2(x + 5)2 =
5− x

2x1/2(x + 5)2

which is negative if x > 5. Therefore
(√

j
j+5

)∞

j=5
is decreasing. Clearly the limit of this sequence

is zero. By the alternating series test, the series
∞
∑

j=5

(−1)j
√

j
j+5 converges. It follows that the original

series
∞
∑

j=0

(−1)j
√

j
j+5 converges conditionally.

4.
∞

∑
k=2

k2

ek2(
Sequence converges to zero (exponential grows faster than k2) so nth term test says nothing.
Comparison not obvious.

Contains exponential, so try ratio test.
)

Writing ak =
k2

ek2 , we have

lim
k→∞

∣∣∣∣ ak+1

ak

∣∣∣∣ = lim
k→∞

(k + 1)2ek2

k2e(k+1)2 = lim
k→∞

(
k + 1

k

)2

· 1
e(k+1)2−k2 = lim

k→∞

1
e2k+1 = 0

Since 0 < 1, the ratio test says that the series
∞
∑

k=2

k2

ek2 is (absolutely) convergent.

1Note that the ratio test would be useless here since there are no exponentials or factorials. Try it. . .
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5.
∞

∑
n=1

4n − 3n2

6n + n(
When n is large this looks like the convergent geometric series ∑ 4n

6n

)
We compare with the convergent geometric series ∑ 4n

6n . Certainly the series is a sum of positive
terms.2 Indeed, if n ≥ 1, we have

4n − 3n2

6n + n
≤ 4n

6n + n
≤ 4n

6n

By the comparison test we conclude that

∞

∑
n=1

4n − 3n2

6n + n
≤

∞

∑
n=1

4n

6n

whence the former converges.

6. Compare the convergence statuses of
∞

∑
n=1

(
−n

2n + 1

)5n

,
∞

∑
n=1

(
−n

n + 1

)5n

and
∞

∑
n=1

(
−2n
n + 1

)5n

(
Since all series involve nth powers, the root test seems the obvious candidate.

)
Note that

lim
n→∞

∣∣∣∣∣
(
−n

2n + 1

)5n
∣∣∣∣∣
1/n

= lim
n→∞

(
n

2n + 1

)5

=
1
25

Since 1
25 < 1 the root test says that the first series converges absolutely.(

It should be obvious now that applying the root test to the second series will give the incon-

clusive limit 1, so we need something else. Does the sequence go to zero?
)

Observe that

lim
n→∞

∣∣∣∣∣
(
−n

n + 1

)5n
∣∣∣∣∣ = lim

n→∞

(
1

(n + 1)/n

)5n

= lim
n→∞

(
1 +

1
n

)−5n

= e−5

In particular,
( −n

n+1

)5n does not converge to zero: by the nth term test, the second series diverges.
The nth term of the final series clearly has absolute value larger than that of the second series.
Clearly this sequence does not converge to zero either, and the series consequently diverges.

2If you doubt this, consider the first few numerators and note that the exponential 4n increases much quicker than 3n2.
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