
11.8 Power Series

Power series are essentially polynomials of infinite degree. For example, recall that the geometric
series ∑∞

n=0 rn converges to 1
1−r if |r| < 1. We could imagine the series as a function of the variable

x = r and write

1
1− x

=
∞

∑
n=0

xn = 1 + x + x2 + x3 + x4 + · · ·

Given that the series converges if and only if −1 < x < 1, we say that the power series/infinite
polynomial represents the function 1

1−x on the interval (−1, 1).
Power series have many of the advantages of polynomials in that they are easy to add and to differ-
entiate/integrate. The history of power series is long: in the days before concepts such as sine and
cosine were thought of as functions, Issac Newton did much of his work using power series. The
delicate issues of convergence were ironed out some decades after Newton’s time.

Definition. The power series with center a and coefficients cn is the expression1

∞

∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

For each fixed value of x, a power series is an infinite series. It therefore converges or diverges. It is
possible for a power series to converge for some values of x and diverge for others. We can think of
the set of values x for which a power series converges as the domain of a function:

p(x) =
∞

∑
n=0

cn(x− a)n

For example, if p(x) =
∞

∑
n=0

xn then p(x) =
1

1− x
with domain (−1, 1).

Certainly a power series always converges at its center where p(a) = c0. It will be seen that a power
series need not converge at any other values of x.

Finding the domain of a power series

The ratio test is often very effective for finding where a power series converges. For example, suppose
that

p(x) =
∞

∑
n=0

n− 1
2n xn = −1 +

1
4

x2 +
1
4

x3 +
3

16
x4 +

1
8

x5 + · · ·

If we imagine this as an infinite series of the form ∑ an, we can apply the ratio test: simply pretend
that x is a constant until we are done.∣∣∣∣ an+1

an

∣∣∣∣ = n |x|n+1

2n+1 · 2n

(n− 1) |x|n =
n

2(n− 1)
|x| −→

n→∞

|x|
2

{
< 1 ⇐⇒ |x| < 2
> 1 ⇐⇒ |x| > 2

1Throughout we use the convention that (x− a)0 = 1, even if x = a. We will similarly use the convention that 0! = 1. A
power series is always considered to start with a zeroth term c0. It is of course possible that c0 = 0, but we abstractly always
work with n counting from zero.
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The outcome of the ratio test depends on the value of x. If |x| < 2, then the ratio test says that the
power series p(x) converges absolutely. If |x| > 2 then the power series diverges.
It remains to consider what happens when x = ±2.

If x = 2: The series becomes
∞
∑

n=0
(n− 1) which diverges to infinity.

If x = −2: The series becomes
∞
∑

n=0
(−1)n(n− 1) which diverges by oscillation.

Therefore the power series converges absolutely when |x| < 2, and diverges when |x| ≥ 2. With a
little calculus (later) we can see that

p(x) =
∞

∑
n=0

n− 1
2n xn =

4x− 4
(2− x)2 with domain (−2, 2)

What is the point of this exercise? One of the most com-
mon applications of power series is to truncate the se-
ries after a few terms to obtain a polynomial. This will
(hopefully) be a good approximation to the power series
function, and will be much easier to work with.

In the picture, the curve y = p(x) is drawn in blue,
while the other curves are polynomials obtained from
the power series by taking only the first few terms (more
orange = more terms). It certainly seems that the more
terms we take, the better the approximation gets.
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The detail of some of this constitutes the rest of the course. To start us off, we notice that the domain
of the power series above is an interval. In fact this is always the case.

Theorem. Given a power series p(x) =
∞
∑

n=0
cn(x− a)n, exactly one of the following is true:

1. The series converges only when x = a

2. The series converges for all x ∈ R

3. There is some value R > 0 such that series converges absolutely whenever |x− a| < R and diverges
whenever |x− a| > R

Definition. We call R the radius of convergence. It is a convention to take R = 0 in case 1 and R = ∞
in case 2 of the Theorem.
The set of values x for which the series converges (the domain of the power series) is termed the
interval of convergence.

Note that a power series could converge or diverge when x = a± R. The interval of convergence is
therefore exactly one of the following:

{a}, (−∞, ∞), [a− R, a + R], (a− R, a + R], [a− R, a + R), (a− R, a + R)
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We have to test the endpoints of the interval separately to identify the interval of convergence.
While a complete proof of the Theorem is too difficult for this course, we can prove a useful result

which often allows us to easily compute the radius of convergence.

Theorem (Ratio Test for Power Series). The radius of convergence R of a power series ∑ cn(x− a)n satisfies

R = lim
n→∞

∣∣∣∣ cn

cn+1

∣∣∣∣
if the limit exists or is ∞.

Be careful! The computed limit is upside down relative to that in the ratio test!

Proof. Assume that the limit L = lim
n→∞

∣∣∣ cn+1
cn

∣∣∣ exists, and apply the ratio test to the power series

∑ cn(x− a)n. Then

lim
n→∞

∣∣∣∣ cn+1(x− a)n+1

cn(x− a)n

∣∣∣∣ = lim
n→∞

∣∣∣∣ cn+1

cn

∣∣∣∣ |x− a| = L |x− a|

By the ratio test, if x is such that right hand side is less than 1, then the power series converges
absolutely. If the right hand side is greater than 1, then the power series diverges. There are three
cases:

If L = 0: Then the series converges for all x, whence R = ∞.

If 0 < L < ∞: Then the series converges when |x− a| < 1
L and diverges when |x− a| > 1

L . By the
Theorem, 1

L is the radius of convergence.

If L = ∞: Then the left hand side of the above converges if and only if x = a, whence R = 0.

Examples

1. Let p(x) =
∞

∑
n=0

xn

n!
. Applying the ratio test, we have

R = lim
n→∞

∣∣∣∣ cn

cn+1

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1/n!
1/(n + 1)!

∣∣∣∣ = lim
n→∞

n + 1 = ∞

It follows that the power seres p(x) converges absolutely for all x ∈ R.

2. Repeating for p(x) =
∞

∑
n=0

n!
(n + 3)2 (x− 4)n, we obtain

R = lim
n→∞

∣∣∣∣ n!(n + 4)2

(n + 1)2(n + 1)!

∣∣∣∣ = lim
n→∞

(n + 4)2

(n + 1)3 = 0

The power series only converges when x = 4.
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3. p(x) =
∞

∑
n=0

(−2)n

2n + 1
(x− 3)n has

R = lim
n→∞

∣∣∣∣ (−2)n(2n + 3)
(2n + 1)(−2)n+1

∣∣∣∣ = lim
n→∞

2n + 3
2(2n + 1)

=
1
2

Therefore the power series converges absolutely whenever |x− 3| < 1
2 and diverges whenever

|x + 3| > 1
2 . We still need to test when |x− 3| = 1

2 . There are two cases:

If x− 3 = 1
2 : then p(x) =

∞
∑

n=0

(−1)n

2n+1 which converges (conditionally) by the alternating series
test.

If x− 3 = − 1
2 : then p(x) =

∞
∑

n=0

1
2n+1 which diverges by comparison with the harmonic series

∑ 1
n .

We conclude that the series converges if and only if

−1
2
< x− 3 ≤ 1

2
⇐⇒ 5

2
< x ≤ 7

2

Suggested problems

1. Find the radius of convergence and the interval of convergence:

(a)
∞

∑
n=0

1
3n + 1

xn

(b)
∞

∑
n=0

(n + 1)2nxn

(c)
∞

∑
n=0

1
3n(n2 + 2)

xn

2. Find the radius of convergence and the interval of convergence:

(a)
∞

∑
n=1

n3

3n (2x + 1)n

(b)
∞

∑
n=0

(−1)n

8n · (3n + 2)
x3n+2

3. (a) The Bessel function of order zero has the formula

J0(x) =
∞

∑
n=0

(−1)n

(n!)2

( x
2

)2n

Find its interval of convergence.

(b) Suppose that the interval of convergence of the power series ∑ cn(x − 1)n is (−1, 3). For

what values of x does the expression ∑
cn(x2 − 3)n

3n converge?
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