
11.9 Representations of Functions as Power Series

As we saw before, one of the main ideas of power series is in trying to represent functions in a
different way. The approach really becomes useful when there is no other good way of representing
a function. Everything in this section follows from the important fact about geometric series:

1
1− x

=
∞

∑
n=0

xn if and only if − 1 < x < 1

Example Given the geometric series formula above, we can replace x with something more com-
plicated, as long as we think about the domain carefully. For instance

1
1 + x3 =

∞

∑
n=0

(−x3)n =
∞

∑
n=0

(−1)nx3n = 1− x3 + x6 − x9 + · · ·

This equality holds if and only if −1 < −x3 < 1 ⇐⇒ −1 < x < 1.

The real benefit is that we can integrate and differentiate this expression, provided x stays be-
tween ±1. Therefore∫ 1

1 + x3 dx =
∞

∑
n=0

(−1)n
∫

x3n dx = C +
∞

∑
n=0

(−1)n

3n + 1
x3n+1

= C + x− 1
4

x4 +
1
7

x7 − 1
10

x10 + · · ·

again, provided that −1 < x < 1. This integral could have been computed using partial fractions
methods, but it is very tricky and slow: a power series representation is much easier. The following
theorem formalizes this term-by-term integration and differentiation.

Theorem. If p(x) =
∞
∑

n=0
cn(x− a)n has radius of convergence R, then

p′(x) =
∞

∑
n=1

cnn(x− a)n−1 =
∞

∑
n=0

cn+1(n + 1)(x− a)n

∫
p(x)dx = C +

∞

∑
n=0

cn

n + 1
(x− a)n+1 = C +

∞

∑
n=1

cn−1

n
(x− a)n

Moreover, both have radius of convergence R.

The integral and derivative don’t necessarily have the same interval of convergence, just radius.1

Example Find the interval of convergence of p(x) =
∞
∑

n=1

1
n23n xn, and its integral and derivative.

Applying the ratio test for power series, we have

R = lim
n→∞

∣∣∣∣ cn

cn+1

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)23n+1

n23n

∣∣∣∣ = 3

p(x),
∫

p(x)dx and p′(x) therefore all converge absolutely when |x| < 3 and diverge when |x| > 3.
It remains to check the endpoints of the intervals of convergence.

1The best we can say is that if p(x) converges absolutely at an endpoint of the interval, then so does its integral.
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• p(x) =
∞
∑

n=1

1
n23n xn: At x = 3 we have the series

∞
∑

n=1

1
n2 which converges. At x = −3 we have

∞
∑

n=1

(−1)n

n2 which also converges. Therefore p(x) has interval of convergence [−3, 3].

•
∫

p(x)dx = C +
∞
∑

n=1

1
(n+1)n23n xn+1: At x = 3 we have the series C +

∞
∑

n=1

3
(n+1)n2 which converges

by comparison with ∑ 1
n3 . Similarly

∫
p(x)dx converges at x = −3 and therefore has interval

of convergence [−3, 3].

• p′(x) =
∞
∑

n=1

1
n3n xn−1: At x = 3 we have the series

∞
∑

n=1

1
3n which diverges, while at x = −3 we

have
∞
∑

n=1

(−1)n

3n which converges. Therefore p′(x) has interval of convergence [−3, 3).

We can also integrate and differentiate well-understood series term by term.

1. The geometric series 1
1−x =

∞
∑

n=0
xn has radius of convergence R = 1. Therefore

ln |1− x| =
∫ x

0

1
1− t

dt =
∞

∑
n=0

1
n + 1

xn+1 =
∞

∑
n=1

1
n

xn

Replacing x with x3, it follows that

ln
∣∣1− x3∣∣ = ∞

∑
n=1

1
n

x3n

after which we could integrate again:

∫
ln
∣∣1− x3∣∣ dx = C +

∞

∑
n=1

1
n(3n + 1)

x3n+1

Since the original series has radius of convergence R = 1, so do all of the others. The conveg-
rence at the endpoints x = ±1 depends on the series.

2. We could also replace x with −x2 in the geometric series.

1
1 + x2 =

∞

∑
n=0

(−1)nx2n converges ⇐⇒ −1 < −x2 < 1 ⇐⇒ −1 < x < 1

Since 1
1+x2 has anti-derivative tan−1 x, we have

tan−1 x =
∫ ∞

∑
n=0

(−1)nx2n dx = C +
∞

∑
n=0

(−1)n

2n + 1
x2n+1

where C = 0 by evaluation at x = 0. By the Theorem, this also has radius of convergence 1. In
fact, by considering x = ±1 it is easy to see that the interval of convergence is [−1, 1].
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Suggested problems

1. Recall that
1

1− x
=

∞

∑
n=0

xn when |x| < 1.

(a) Find a power series representation for f (x) =
1

1 + x4 .

(b) Use your answer to (a) to find an infinite series expression for the integral∫ 1/3

0

1
1 + x4 dx

(c) Why is this method no use for the integral
∫ 2

0
1

1+x4 dx?

2. Starting with the same geometric series in question 1, find a power series representation of the
following functions. For which values of x can you be sure that the power series equals the
function?

(a) ln(1 + x)

(b) (1− x2)−2

(c) x tan−1(3x2)

3. (a) Express the power series
∞

∑
n=0

(−1)n(n + 1)x2n+1 in terms of common functions (Hint: start

with 1
1+x2 . . . ).

(b) The function f (x) = ∑∞
n=0

xn

n! was shown in lectures to have radius of convergence ∞.
Prove that f (x) = ex (Try re-reading section 3.8 from Math 2A. . . ).
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