11.9 Representations of Functions as Power Series

As we saw before, one of the main ideas of power series is in trying to represent functions in a different way. The approach really becomes useful when there is no other good way of representing a function. Everything in this section follows from the important fact about geometric series:

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad \text { if and only if } \quad-1<x<1
$$

Example Given the geometric series formula above, we can replace x with something more complicated, as long as we think about the domain carefully. For instance

$$
\frac{1}{1+x^{3}}=\sum_{n=0}^{\infty}\left(-x^{3}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{3 n}=1-x^{3}+x^{6}-x^{9}+\cdots
$$

This equality holds if and only if $-1<-x^{3}<1 \Longleftrightarrow-1<x<1$.
The real benefit is that we can integrate and differentiate this expression, provided x stays between ± 1. Therefore

$$
\begin{aligned}
\int \frac{1}{1+x^{3}} \mathrm{~d} x & =\sum_{n=0}^{\infty}(-1)^{n} \int x^{3 n} \mathrm{~d} x=C+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3 n+1} x^{3 n+1} \\
& =C+x-\frac{1}{4} x^{4}+\frac{1}{7} x^{7}-\frac{1}{10} x^{10}+\cdots
\end{aligned}
$$

again, provided that $-1<x<1$. This integral could have been computed using partial fractions methods, but it is very tricky and slow: a power series representation is much easier. The following theorem formalizes this term-by-term integration and differentiation.
Theorem. If $p(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has radius of convergence R, then

$$
\begin{aligned}
& p^{\prime}(x)=\sum_{n=1}^{\infty} c_{n} n(x-a)^{n-1}=\sum_{n=0}^{\infty} c_{n+1}(n+1)(x-a)^{n} \\
& \int p(x) \mathrm{d} x=C+\sum_{n=0}^{\infty} \frac{c_{n}}{n+1}(x-a)^{n+1}=C+\sum_{n=1}^{\infty} \frac{c_{n-1}}{n}(x-a)^{n}
\end{aligned}
$$

Moreover, both have radius of convergence R.
The integral and derivative don't necessarily have the same interval of convergence, just radius ${ }^{1} 1$
Example Find the interval of convergence of $p(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2} 3^{n}} n^{n}$, and its integral and derivative.
Applying the ratio test for power series, we have

$$
R=\lim _{n \rightarrow \infty}\left|\frac{c_{n}}{c_{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2} 3^{n+1}}{n^{2} 3^{n}}\right|=3
$$

$p(x), \int p(x) \mathrm{d} x$ and $p^{\prime}(x)$ therefore all converge absolutely when $|x|<3$ and diverge when $|x|>3$. It remains to check the endpoints of the intervals of convergence.

[^0]- $p(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2} 3^{n}} x^{n}$: At $x=3$ we have the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ which converges. At $x=-3$ we have $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ which also converges. Therefore $p(x)$ has interval of convergence $[-3,3]$.
- $\int p(x) \mathrm{d} x=C+\sum_{n=1}^{\infty} \frac{1}{(n+1) n^{2} 3^{n}} x^{n+1}$: At $x=3$ we have the series $C+\sum_{n=1}^{\infty} \frac{3}{(n+1) n^{2}}$ which converges by comparison with $\sum \frac{1}{n^{3}}$. Similarly $\int p(x) \mathrm{d} x$ converges at $x=-3$ and therefore has interval of convergence $[-3,3]$.
- $p^{\prime}(x)=\sum_{n=1}^{\infty} \frac{1}{n 3^{n}} x^{n-1}$: At $x=3$ we have the series $\sum_{n=1}^{\infty} \frac{1}{3 n}$ which diverges, while at $x=-3$ we have $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3 n}$ which converges. Therefore $p^{\prime}(x)$ has interval of convergence $[-3,3)$.
We can also integrate and differentiate well-understood series term by term.

1. The geometric series $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ has radius of convergence $R=1$. Therefore

$$
\ln |1-x|=\int_{0}^{x} \frac{1}{1-t} \mathrm{~d} t=\sum_{n=0}^{\infty} \frac{1}{n+1} x^{n+1}=\sum_{n=1}^{\infty} \frac{1}{n} x^{n}
$$

Replacing x with x^{3}, it follows that

$$
\ln \left|1-x^{3}\right|=\sum_{n=1}^{\infty} \frac{1}{n} x^{3 n}
$$

after which we could integrate again:

$$
\int \ln \left|1-x^{3}\right| \mathrm{d} x=C+\sum_{n=1}^{\infty} \frac{1}{n(3 n+1)} x^{3 n+1}
$$

Since the original series has radius of convergence $R=1$, so do all of the others. The convegrence at the endpoints $x= \pm 1$ depends on the series.
2. We could also replace x with $-x^{2}$ in the geometric series.

$$
\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \text { converges } \Longleftrightarrow-1<-x^{2}<1 \Longleftrightarrow-1<x<1
$$

Since $\frac{1}{1+x^{2}}$ has anti-derivative $\tan ^{-1} x$, we have

$$
\tan ^{-1} x=\int \sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \mathrm{~d} x=C+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}
$$

where $C=0$ by evaluation at $x=0$. By the Theorem, this also has radius of convergence 1 . In fact, by considering $x= \pm 1$ it is easy to see that the interval of convergence is $[-1,1]$.

Suggested problems

1. Recall that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ when $|x|<1$.
(a) Find a power series representation for $f(x)=\frac{1}{1+x^{4}}$.
(b) Use your answer to (a) to find an infinite series expression for the integral

$$
\int_{0}^{1 / 3} \frac{1}{1+x^{4}} \mathrm{~d} x
$$

(c) Why is this method no use for the integral $\int_{0}^{2} \frac{1}{1+x^{4}} \mathrm{~d} x$?
2. Starting with the same geometric series in question 1 , find a power series representation of the following functions. For which values of x can you be sure that the power series equals the function?
(a) $\ln (1+x)$
(b) $\left(1-x^{2}\right)^{-2}$
(c) $x \tan ^{-1}\left(3 x^{2}\right)$
3. (a) Express the power series $\sum_{n=0}^{\infty}(-1)^{n}(n+1) x^{2 n+1}$ in terms of common functions (Hint: start with $\left.\frac{1}{1+x^{2}} \ldots\right)$.
(b) The function $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ was shown in lectures to have radius of convergence ∞. Prove that $f(x)=e^{x}$ (Try re-reading section 3.8 from Math $2 A \ldots$...).

[^0]: ${ }^{1}$ The best we can say is that if $p(x)$ converges absolutely at an endpoint of the interval, then so does its integral.

