4.9 Anti-derivatives

Anti-differentiation is exactly what it sounds like: the opposite of differentiation. That is, given a function f, can we find a function F whose derivative is f.

Definition. An anti-derivative of a function f is a function F such that $F^{\prime}(x)=f(x)$ for all x.

Examples

1. $F(x)=\sin x$ is an anti-derivative of $f(x)=\cos x$.
2. $F(x)=\left(x^{2}+3\right)^{3 / 2}$ is an anti-derivative of $f(x)=3 x \sqrt{x^{2}+3}$.
3. $F(x)=\frac{x^{2}-3}{\cos x}$ is an anti-derivative of $f(x)=\frac{2 x+\left(x^{2}-3\right) \tan x}{\cos x}$.

We can easily check the veracity of these statements by differentiating $F(x)$. But what if you are asked to find an anti-derivative, not just check something you've been given? In general this is a hard problem ${ }^{1}$ The only method that really exists for explicitly computing anti-derivatives is guess and differentiate! Indeed every famous rule that you'll study in Integration (substitution, integration by parts, etc.) is merely the result of guessing a general anti-derivative and checking that your guess is correct!

Anti-derivatives of Common Functions Guessing is, of course, easier if you have familiarity with differentiation. With each of the following functions $f(x)$ you should be able to guess the chosen anti-derivative $F(x)$ just from what you know about derivatives.

Function $f(x)$	Anti-derivative $F(x)$
$k f(x), \quad k$ constant	$k F(x)$
$f(x)+g(x)$	$F(x)+G(x)$
$x^{n}, \quad n \neq-1$	$\frac{1}{n+1} x^{n+1}$
x^{-1}	$\ln \|x\|$
$\cos x$	$\sin x$
$\sin x$	$-\cos x$
$\sec ^{2} x$	$\tan x$
$e^{k x}$	$\frac{1}{k} e^{k x}$

Examples

1. $f(x)=3+\frac{2}{x}$ has an anti-derivative $F(x)=3 x+2 \ln |x|$.
2. $f(x)=3 \sec ^{2} x-2 e^{3 x}$ has an anti-derivative $F(x)=3 \tan x-\frac{2}{3} e^{3 x}$.

[^0]3. Find an anti-derivative of $g(x)=\cos x+\frac{x^{3}+\sqrt{x}}{x^{2}}$.

The trick is to manipulate $g(x)$ so that its terms are in the table. We know that $\sin x$ is an antiderivative of $\cos x$, so the challenge is to deal with the second term. Thankfully we can rewrite it as a sum of powers of x :

$$
\frac{x^{3}+\sqrt{x}}{x^{2}}=x+x^{-3 / 2}
$$

which can now be anti-differentiated. It follows that a suitable anti-derivative of $g(x)$ is

$$
G(x)=\sin x+\frac{1}{2} x^{2}-2 x^{-1 / 2}
$$

How many anti-derivatives does a function have?

The definition of anti-derivative does nothing more than providing an alternative way of refering to a pair of functions f and F satisfying the equation $f(x)=F^{\prime}(x)$. That is, the following statements mean exactly the same thing.

- $f(x)$ is the derivative of $F(x)$.
- $F(x)$ is an anti-derivative of $f(x)$.

The crucial observation is the difference between the articles the and an: a given function has at most one derivative, but (potentially) many anti-derivatives. Indeed, $F(x)=\sin x$ and $G(x)=17+\sin x$ are both anti-derivatives of $f(x)=\cos x$. We have already resolved this problem when discussing the Mean Value Theorem, but here it is again.
Theorem. If $F(x)$ and $G(x)$ are anti-derivatives of $f(x)$ on an interval I, then

$$
G(x)=F(x)+c \quad \text { where } c \text { is some constant. }
$$

Proof. Let $H=F-G$. Let $a \in I$ be fixed and let x be any other value in I. By the Mean Value Theorem we see that there exists some ξ between a and x for which

$$
H^{\prime}(\xi)=\frac{H(x)-H(a)}{x-a}
$$

However, $H^{\prime}(\xi)=F^{\prime}(\xi)-G^{\prime}(\xi)=f(\xi)-f(\xi)=0$ for all $\xi \in I$, whence

$$
H(x)=H(a)
$$

We conclude that $H(x)=c$ is constant. Hence result.

Examples

1. The function $f(x)=x+3 x^{3}+29 \sin x$ has domain \mathbb{R} (a single interval), whence all the antiderivatives of f have the form

$$
F(x)=\frac{1}{2} x^{2}+\frac{3}{4} x^{4}-29 \cos x+c
$$

for some constant c.
2. (a) Find all the anti-derivatives of $f(x)=3-2 x-2 e^{-x}$.
(b) Find the unique anti-derivative of f which passes through the point $(2,3)$.

First observe that the domain of f is a single interval \mathbb{R}. Appealing to the table, the general anti-derivative of f is

$$
F(x)=3 x-x^{2}+2 e^{-x}+c
$$

where c is any constant.

If the graph of $y=F(x)$ is to pass through the point $(2,3)$, then we must have

$$
3=F(2)=6-4+2 e^{-2}+c \Longrightarrow c=1-2 e^{-2}
$$

Therefore

$$
F(x)=3 x-x^{2}+2 e^{-x}+1-2 e^{-2}
$$

The function f and several of its anti-derivatives F are drawn, with the desired answer to part (b) in blue.

What if the domain is not an interval? The Theorem says that anti-derivatives differ by a constant for any function defined on an interval. If a function f has a domain that is not an interval, then there are more possibilities for anti-derivatives F : in fact we obtain a new arbitrary constant for every interval of continuity of f.

Example Find the most general anti-derivative of the function $f(x)=\frac{1}{x}$ defined on the domain $(-\infty, 0) \cup(0, \infty)$.
Looking at the table, we see that $F(x)=\ln |x|$ is an anti-derivative of $f(x)$. Does this mean that all anti-derivatives have the form $\ln |x|+c$ for a constant c ? The answer is $n o$!

- On the interval $(0, \infty)$, all anti-derivatives have the form $F(x)=\ln |x|+c_{1}=\ln x+c_{1}$ for some constant c_{1}.
- On the interval $(-\infty, 0)$, all anti-derivatives have the form $F(x)=\ln |x|+c_{2}=\ln (-x)+c_{2}$ for some constant c_{2}.
Since the intervals do not intersect, there is nothing that says that the constants must be the same! The most general anti-derivative is therefore

$$
F(x)=\left\{\begin{array}{ll}
\ln x+c_{1} & \text { if } x>0 \\
\ln (-x)+c_{2} & \text { if } x<0
\end{array} \quad \text { where } c_{1} \text { and } c_{2}\right. \text { are constant. }
$$

Because of the ulginess of the above, mathematicians will typically still write $F(x)=\ln |x|+c$. It is up to the reader to understand in this case that, for a given anti-derivative, the constant c could be different on each interval of continuity of f.

Anti-differentiation and Physics

Suppose that a particle moves under the influence of a force F. The beauty of Newton's Second Law $F=m a$ is that it tells you something about the second derivative $a=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}$ of the position s of the particle. A great deal of Physics is based on solving this differential equation: given a force and some initial conditions ${ }^{2}$ find its location at time t. Here we discover the standard formulæ of kinematics using anti-differentiation.

An object of mass m is acted on by a constant force (gravity) of magnitude $m g\left(\mathrm{~ms}^{-2}\right)$. Its initial velocity is $v_{0}\left(\mathrm{~ms}^{-1}\right)$ and its initial position is $s_{0}(\mathrm{~m})$ from a fixed point.

- Newton's Second Law says that $a=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=g$.
- Recall that acceleration is the derivative of velocity $v(t)$. Since g is constant, the anti-derivatives of a are of the form $v(t)=g t+c$ where c is constant \int_{\square}^{3}
- Since $v(0)=v_{0}$, we conclude that $c=v_{0}$ and so

$$
v(t)=g t+v_{0}
$$

- Velocity is the derivative of position $s(t)$. Since g and v_{0} are constant, all anti-derivatives of v have the form $s(t)=\frac{1}{2} g t^{2}+v_{0} t+\hat{c}$, where \hat{c} is constant.
- Since $s(0)=s_{0}$, we conclude that $\hat{c}=s_{0}$ and so

$$
s(t)=\frac{1}{2} g t^{2}+v_{0} t+s_{0}
$$

What this shows is that the standard high-school kinematics equations for falling objects depend only on

- Newton's Second Law.
- A constant force.
- Calculus!

Example An astronaut jumps on the moon ($g=-1.625 \mathrm{~ms}^{-2}$) and reaches a maximum height of 3.25 m . How long was the astronaut in the 'air'?

We compute how long it takes the astronaut to fall 3.25 m . Suppose that $t=0$ at the top of the jump, then $s_{0}=3.25$ and $v_{0}=0$. It follows that

$$
s(t)=-0.8125 t^{2}+3.25=0 \Longleftrightarrow t=\sqrt{\frac{3.25}{0.8125}}=\sqrt{4}=2 \mathrm{~s} .
$$

It follows that the astronaut was off the ground for a total of 4 s .

[^1]
Suggested problems

1. Find all anti-derivatives of the function $f(x)=2 x^{2}+\frac{\sqrt{x}+\sqrt[4]{x}}{x}$
2. (a) Find the anti-derivative $F(x)$ of $f(x)=\cos 2 x$ which satisfies the condition $F\left(\frac{\pi}{2}\right)=1$.
(b) What about if the condition is $F(\pi)=2$?
3. (a) Find all the anti-derivatives of $f(x)=\frac{1}{x^{2}}$.
(b) Find the anti-derivative of $f(x)=\frac{1}{x^{2}}$ which passes through the points $(1,1)$ and $(-1,3)$.
4. Suppose that object A is located at $s=0$ at time $t=0$ and starts moving along the s-axis with a velocity given by $v(t)=2 a t$, where $a>0$. Object B is located at $s=c>0$ at $t=0$ and starts moving along the s-axis with a constant velocity given by $V(t)=b>0$. Show that A overtakes B at time

$$
t=\frac{b+\sqrt{b^{2}+4 a c}}{2 a}
$$

[^0]: ${ }^{1}$ Differentiation is often described as easy in the sense that nice functions can usually be differentiated via our familiar rules. Anti-differentiation is hard: very few functions have anti-derivatives that can easily be computed. For example, it is easy to find the derivative of $f(x)=e^{-x^{2}}$, namely $f^{\prime}(x)=-2 x e^{-x^{2}}$, but can you find an anti-derivative of $f(x)$? If, by this, you mean an explicit formula involving simple functions (algebraic, trigonometric, exponential), then the answer is no. The best we can do is to prove that an anti-derivative exists and then estimate it to whatever degree of accuracy we need.

[^1]: ${ }^{2}$ Where does the particle start and how fast is it initially travelling?
 ${ }^{3}$ The domain of all our functions is time, which is certainly a single interval!

