
5 Integration

5.1 Areas and Distances

The starting point of integral calculus is the problem of calculating area. The naı̈ve concept of area
comes from the formula for the area of rectangle:

Area = Length ·Width

The area of a triangle is then immediately half that of a rectangle, and any shape which may be sub-
divided into triangles may have its area computed.

The primary question of integral calculus is of how to extend this idea to cover shapes which
cannot be built from triangles. For example, below is the graph of the curve y) = 1+ x− 1

3 x3 between
0 ≤ x ≤ 2; how are we to compute the shaded area?
The answer we provide is very old and very simple:1 approximate the area under the curve by
rectangles and sum the areas of these. If we take a larger number of rectangles, we will hopefully
obtain a better approximation to the desired area.2

While the process may seem simple, there are many deep questions raised by it, for instance:

• Does this approximating process work for all functions?

• Does it matter how we choose the rectangles?

• The process is inefficient. While a computer might be able to evaluate the sum of the areas of
(say) 1500 rectangles in a few seconds, no human can do so. The process will, at best, return
only an approximation of the area. Can the area ever be computed exactly, or is this a method
that should be left to computers?

We cannot properly address all these questions in this course though we will provide partial
answers to all three. In particular, let us start with an easier example. . .

1Versions of this method were known to the ancient Greeks 2300 years ago.
2If you are using Acrobat Reader, click the picture and convince yourself.
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Upper and lower bounds for areas In the pictures below, the area under the curve y = x3 between
x = 0 and x = 1 is estimated using rectangles. In each picture we do the following:

1. Subdivide the interval [0, 1] into n equal segments, where n is a positive integer.

2. Draw a rectangle above each segment so that the upper edge of the rectangle is either just above
(first picture) or just below (second picture) the curve.

3. Since we know the endpoints of each small segment, the equation y = x3 of the curve gives the
height and therefore the area of each rectangle.

4. The computer then sums the areas of the drawn rectangles. In the first case the area under the
curve is clearly less than the sum Rn of the areas of the rectangles. In the second case the area
under the curve is greater than the sum Sn of the areas of the rectangles.

n rectangles fitting just over curve
Rn > Area under curve

n rectangles fitting just under curve
Sn < Area under curve

For example, if n = 2, then we construct two rectangles, each with width 1
2 . The two rectangles in

the first picture will have height
( 1

2

)3
and 13, while in the second picture the rectangles have height

03 and
( 1

2

)3
. It follows that

R2 =
1
2
·
(

1
2

)3

+
1
2
· 13 = 0.5625

S2 =
1
2
· 03 +

1
2
·
(

1
2

)3

= 0.0625

From the animations, it appears as if the sequence (Rn) is decreasing towards 1
4 , while the sequence

(Sn) is increasing towards 1
4 . If this is indeed the case, then an application of the squeeze theorem says

that the area under the curve really is 1
4 .{

Sn < Area < Rn

lim
n→∞

Sn = 1
4 = lim

n→∞
Rn

Squeeze
=⇒

Theorem
Area =

1
4
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In essence, this is the line of reasoning in the abstract theory of Riemann3 Integration: in an upper-
division Analysis course it will be proved that the above process is completely watertight and will
allow one to (abstractly) compute the area between the x-axis and any continuous curve defined on a
closed bounded interval like [0, 1].

Distances

There are a multitude of applications of the problem of finding areas under curves. The oldest, and
perhaps the biggest motivator of calculus is the computation of the distance travelled by an objuect
whose speed is known. If an object travels at a constant speed v for a time interval t, then the distance
it travels is simply s = vt.

Now suppose that we are given a velocity-time graph,4 and that we estimate the area under this
curve using rectangles. The area of each rectangle necessarily has units of

(velocity) · (time) = (distance)

Indeed the area of each rectangle is precisely the distance a particle woule have travelled if its speed
had been constant over the indicated time interval. We illustrate this in the example below. For the
present it is sufficient to note that the computation of area under a velocity-time graph is precisely
that of the distance travelled by the particle. This is exactly the opposite of the velocity problem of
differential calculus.

Differential Calculus Velocity = Slope of distance-time graph

Integral Calculus Distance travelled = Area under velocity-time

Example Suppose that a car’s speedometer reads the following values

Time t (s) 0 15 30 45 60
Speed v (ft/s) 0 18 25 30 27

(a) Estimate the distance traveled by the car over 60 seconds using four sub-intervals and using
the speed at the right endpoint of each subinterval.

(b) Estimate instead using left endpoints.

(c) Combine (a) + (b) to make a best guess of the distance traveled.

Solution: Each time interval has ‘width’ 15 seconds. Pretend that car has constant speed over each
15s interval to estimate total distance D traveled.

(a) The speed over each 15s interval is assumed to be the
speed at the end of each interval. Thus

D ≈ 15(18 + 25 + 30 + 27) = 1500 ft 0

10

20

30

v(
t)

0 15 30 45 60
t

3Named after (Georg) Bernhard Riemann (pronounced Reeman!), a German mathematician of the mid 19th century,
and the first person to thoroughly justify this process.

4Time of the x-axis and velocity on the y-axis.
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(b) The speed over each 15s interval is assumed to be the
speed at the start of each interval. Thus

D ≈ 15(0 + 18 + 25 + 30) = 1095 ft 0

10

20

30

v(
t)

0 15 30 45 60
t

(c) For a best guess, we average the two results: this is the
same as assuming that the speed of the car over each
subinterval equals the average of its speed at the start
and end of said subinterval.

D ≈ 15
(

9 +
43
2

+
55
2

+
57
2

)
= 1297

1
2

ft
0

10

20

30

v(
t)

0 15 30 45 60
t

Approximating more generally: Riemann Sums

For any continuous curve y = f (x) between x = a and x = b:

1. Subdivide [a, b] into n equal segments of length ∆x = b−a
n

2. Define a sequence xi = a + i∆x (1 ≤ i ≤ n) of right endpoints of subintervals

3. Choose a sample point x∗i ∈ [xi−1, xi], one in each subinterval

4. The rectangle with base [xi−1, xi] and height f (x∗i ) has area f (x∗i )∆x

5. The area under the curve between x = a and b is then approximately the Riemann Sum

n

∑
i=1

f (x∗i )∆x = f (x∗1)∆x + f (x∗2)∆x + · · ·+ f (x∗n)∆x

y

a x1 x2 x3 x4 x5 x6 xn−2 xn−1 b
x

· · ·

· · ·

Theorem (Very Hard!). If f is continuous on [a, b], then the limit

lim
n→∞

n

∑
i=1

f (x∗i )∆x

converges to a value A. This value is independent of the choice of sample points x∗i .
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Definition. If f is a non-negative continuous function on [a, b], then the area under the curve y = f (x)
between x = a and b is defined to be

A = lim
n→∞

n

∑
i=1

f (xi)∆x = (b− a) lim
n→∞

f (x1) + f (x2) + · · ·+ f (xn)

n

In particular, because of the Theorem, we can make the simplest choice where each sample point is
the right endpoint of each subinterval: x∗i = xi.

The second displayed expression lim
n→∞

f (x1)+ f (x2)+···+ f (xn)
n can be thought of as the average height

of the function f . We will return to this idea later.

Examples There are two main types of questions involving Riemann Sums. Here we give an exam-
ple of each.

1. Evaluate an area using limits. We compute the area under the curve y = f (x) = 1− x2 between
x = 0 and 1 using Riemann Sums.
Suppose that we have n equal subintervals. Then the width of each is ∆x = 1−0

n = 1
n . The

right-endpoint of each subinterval has x-coordinate

xi = a + i∆x =
i
n

It follows that the area under the curve is the limit

A = lim
n→∞

n

∑
i=1

f (xi)∆x = lim
n→∞

n

∑
i=1

(1− x2
i )∆x = lim

n→∞

n

∑
i=1

(
1− i2

n2

)
1
n

Often this is where such a question finishes, as such limit expressions are rarely computable
explicitly. However, this is one of very few examples which may be done, by virtue of the
identity5

12 + 22 + · · ·+ n2 =
n

∑
i=1

i2 =
1
6

n(n + 1)(2n + 1)

In particular

A = lim
n→∞

n

∑
i=1

(
1− i2

n2

)
1
n

= lim
n→∞

(
1
n

n

∑
i=1

1− 1
n3

n

∑
i=1

i2

)

= lim
n→∞

(
1
n
· n− 1

n3 ·
1
6

n(n + 1)(2n + 1)
)

= lim
n→∞

(
1− n(n + 1)(2n + 1)

6n3

)
= 1− 2

6
=

2
3

5You do not have to memorize this identity, but you should be able to use it.
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2. Identify an area writen as a limit of Riemann Sums. We identify the area defined by the expression

A = lim
n→∞

n

∑
i=1

4
n

(
1− i2

n2

)1/2

One challenge here is that there are infinitely many possible shapes whose area could be com-
puted as above. We are looking for a function f and an interval [a, b] for which

A = lim
n→∞

n

∑
i=1

f (xi)∆x

In particular, we must have

f (xi)∆x =
4
n

(
1− i2

n2

)1/2

It is often easiest to simply assume that a = 0 and to look for a suitable expression for ∆x. Here
it seems reasonable to take ∆x = 4

n , from which, since ∆x = b−a
n , we obtain b = 4. It follows

that the right-endpoints of each subinterval are

xi = a + i∆x =
4i
n

, i = 1, . . . , n

Since we still need

f (xi) =

(
1− i2

n2

)1/2

=

(
1−

( xi

4

)2
)1/2

we conclude that f (x) =
(
1− 1

16 x2)1/2
. If we write y = f (x), then we are computing the area

under the quarter-ellipse x2

42 + y2 = 1 between x = 0 and x = 4. This is 1
4 π · 4 · 1 = π.

For an alternative answer, we could have chosen f (x) =
√

4− x2, with [a, b] = [0, 2] to obtain
the area of a quarter-circle.

Suggested problems

1. Calculate the Riemann sums using both right and left endpoints for the function f (x) = 1
x on

the interval [1, 5] with n = 4 subintervals. Sketch the graph and both Riemann sums. Hence
find upper and lower bounds for the area under the curve.

2. Suppose that a vehicle’s speed v(t) has the following values

Time t (min) 0 1 2 3 4 5
Speed v (m/s) 2 5 20 15 10 20

(a) Estimate the distance travelled by the vehicle over the time interval 0 ≤ t ≤ 6 using a
Riemann sum with three subintervals and left endpoints.

(b) Repeat with six subintervals and left endpoints.

(c) Which estimate do you expect to be more accurate? Why?
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3. Determine regions whose areas are equal to the following limits: what are their areas?

(a) lim
n→∞

n

∑
i=1

[
1 +

2i
n

]
2
n

(b) lim
n→∞

n

∑
i=1

[
1− i2

n2

]1/2 9
n

4. Compute the area under the curve f (x) = x+ x2 for 1 ≤ x ≤ 3 directly from the limit definition.
You may not use the Fundamental Theorem of Calculus, but may use the following sums

n

∑
i=1

i =
1
2

n(n + 1),
n

∑
i=1

i2 =
1
6

n(n + 1)(2n + 1)
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